Power Tower

DOWNLOAD Mathematica Notebook

The power tower of order k is defined as

 a^^k=a^(a^(·^(·^(·^a))))_()_(k),
(1)

where ^ is Knuth up-arrow notation (Knuth 1976), which in turn is defined by

 a^^nk=a^^(n-1)[a^^n(k-1)]
(2)

together with

a^k=a^k
(3)
a^^n1=a.
(4)

Rucker (1995, p. 74) uses the notation

 ^ka=a^(a^(·^(·^(·^a))))_()_(k),
(5)

and refers to this operation as "tetration."

A power tower can be implemented in the Wolfram Language as

  PowerTower[a_, k_Integer] := Nest[Power[a, #]&, 1, k]

or

  PowerTower[a_, k_Integer] := Power @@ Table[a, {k}]

The following table gives values of a^(a^(·^(·^(·^a))))_()_(n) for a=1, 2, ... for small n.

nSloanea^(a^(·^(·^(·^a))))_()_(n)
1A0000271, 2, 3, 4, 5, 6, 7, 8, 9, 10, ...
2A0003121, 4, 27, 256, 3125, 46656, ...
3A0024881, 16, 7625597484987, ...
41, 65536, ...

The following table gives a^(a^(·^(·^(·^a))))_()_(n) for n=1, 2, ... for small a.

aSloanea^(a^(·^(·^(·^a))))_()_(n)
1A0000121, 1, 1, 1, 1, 1, ...
2A0142212, 4, 16, 65536, 2.00×10^(19728), ...
3A0142223, 27, 7625597484987, ...
44, 256, 1.34×10^(154), ...

Consider z^(z^(·^(·^(·^z))))_()_(m) and let a_(mn) be defined as

 a_(mn)={1   if n=0; 1/(n!)   if m=1; 1/nsum_(j=1)^(n)ja_(m,n-j)a_(m-1,j-1)   otherwise
(6)

(Galidakis 2004). Then for m in N, (e^z)^((e^z)^(·^(·^(·^((e^z))))))_()_(m) is entire with series expansion:

 (e^z)^((e^z)^(·^(·^(·^((e^z))))))_()_(m)=sum_(n=0)^m((n+1)^n)/((n+1)!)z^n+sum_(n=m+1)^inftya_(mn)z^n.
(7)

Similarly, for m in N, z^(z^(·^(·^(·^z))))_()_(m) is analytic for z in the domain of the principal branch of lnz, with series expansion:

 z^(z^(·^(·^(·^z))))_()_(m)=sum_(n=0)^m((n+1)^n)/((n+1)!)ln^nz+sum_(n=m+1)^inftya_(mn)ln^nz.
(8)

For m in N, and x in R,

 int(e^x)^((e^x)^(·^(·^(·^((e^x))))))_()_(m)dx=sum_(n=0)^m((n+1)^(n-2))/(n!)x^(n+1) 
 +sum_(n=m+1)^infty(a_(mn))/(n+1)x^(n+1).
(9)

For m in N, and x>0, and b(n+1,x)=Gamma(n+1,-ln(x))

 intx^(x^(·^(·^(·^x))))_()_(m)dx=sum_(n=0)^m((-1)^n(n+1)^(n-1))/(n!)b(n+1,x) 
 +sum_(n=m+1)^infty(-1)^na_(mn)b(n+1,x).
(10)
PowerTowerHReal
Min Max
Powered by webMathematica
PowerTowerHReImAbs
Min Max
Re
Im Powered by webMathematica

The value of the infinite power tower h(z)=z^^infty=z^(z^(·^(·^·))), where z^(z^z) is an abbreviation for z^((z^z)), can be computed analytically by writing

 z^(z^(·^(·^·)))=h(z)
(11)

taking the logarithm of both sides and plugging back in to obtain

 z^(z^(·^(·^·)))lnz=h(z)lnz=ln[h(z)].
(12)

Solving for h(z) gives

 h(z)=-(W(-lnz))/(lnz),
(13)

where W(z) is the Lambert W-function (Corless et al. 1996). h(z) converges iff e^(-e)<=x<=e^(1/e) (0.0659<=x<=1.4446; OEIS A073230 and A073229), as shown by Euler (1783) and Eisenstein (1844) (Le Lionnais 1983; Wells 1986, p. 35).

Knoebel (1981) gave the following series for h(z)

h(z)=sum_(n=0)^(infty)((n+1)^nln^nz)/((n+1)!)
(14)
=1+lnz+(3^2(lnz)^2)/(3!)+(4^3(lnz)^3)/(4!)+...
(15)

(Vardi 1991).

The special value h(i) is given by

i^(i^(·^(·^·)))=-(W(-lni))/(lni)
(16)
=(2i)/piW(-1/2pii)
(17)
 approx 0.438283+0.3605924i
(18)

(OEIS A077589 and A077590; Macintyre 1966).

PowerTowerG

The related function

 g(x)=x^((1/x)^((1/x)^...))
(19)

converges only for x>=e^(-1/e), that is, x>=0.692 (OEIS A072364). The value it converges to is the inverse of x^x which can be found by taking the logarithm of both sides of (19),

 lng=(1/x)^((1/x)^((1/x)^...))lnx,
(20)

rearranging to

 x^((1/x)^((1/x)^...))lng=lnx,
(21)

and then substituting to obtain

 glng=lnx.
(22)

Solving the resulting equation for x then gives the partial solution

 g(x)=(lnx)/(W(lnx)),
(23)

which is valid for e^(-1/e)<=x<=e^e (i.e., 0.692<x<15.154; OEIS A072364 and A073226). Taking x=e then gives 1/W(1), where W(1) is the omega constant.

A continued fraction due to Khovanskii (1963) for the single iteration of g(x) is given by

 x^(1/x)=1+(2(x-1))/(x^2+1-((x^2-1)(x-1)^2)/(3x(x+1)-((4x^2-1)(x-1)^2)/(5x(x+1)-((9x^2-1)(x-1)^2)/(7x(x+1)-...)))).
(24)
XToTheXReal
Min Max
Powered by webMathematica
XToTheXReImXToTheXContours

The function z^z is plotted above along the real line and in the complex plane. It has series expansion

 x^x=1+xlnx+1/2x^2(lnx)^2+1/6x^3(lnx)^3+...
(25)

(Trott 2004, p. 59). It has a minimum where

 d/(dx)x^x=x^x(1+lnx)=0,
(26)

which has solution x=1/e. At this point, the function takes on the value e^(-1/e).

The indefinite integral

 intx^xdx
(27)

cannot be expressed in terms of a finite number of elementary functions, but some interesting definite integrals of x^x are

int_0^1x^xdx=sum_(n=1)^(infty)((-1)^(n+1))/(n^n)
(28)
=0.7834305107...
(29)
int_0^1x^(-x)dx=sum_(n=1)^(infty)1/(n^n)
(30)
=1.2912859971...
(31)

(OEIS A083648 and A073009; Spiegel 1968; Abramowitz and Stegun 1972; Havil 2003, pp. 44-45; Borwein et al. 2004, p. 5). Borwein et al. (2004, pp. 5 and 44) call these two integrals "a sophomore's dream."

PowerTower3PowerTower3ReImPowerTower3Contours

The function z^(z^z) is plotted above along the real line and in the complex plane, where it shows beautiful structure.

Wolfram Web Resources

Mathematica »

The #1 tool for creating Demonstrations and anything technical.

Wolfram|Alpha »

Explore anything with the first computational knowledge engine.

Wolfram Demonstrations Project »

Explore thousands of free applications across science, mathematics, engineering, technology, business, art, finance, social sciences, and more.

Computerbasedmath.org »

Join the initiative for modernizing math education.

Online Integral Calculator »

Solve integrals with Wolfram|Alpha.

Step-by-step Solutions »

Walk through homework problems step-by-step from beginning to end. Hints help you try the next step on your own.

Wolfram Problem Generator »

Unlimited random practice problems and answers with built-in Step-by-step solutions. Practice online or make a printable study sheet.

Wolfram Education Portal »

Collection of teaching and learning tools built by Wolfram education experts: dynamic textbook, lesson plans, widgets, interactive Demonstrations, and more.

Wolfram Language »

Knowledge-based programming for everyone.