TOPICS
Search

Henneberg's Minimal Surface


HennebergsMinimalSurface

A minimal surface and double algebraic surface of 15th order and fifth class which can be given by parametric equations

x(u,v)=2sinhucosv-2/3sinh(3u)cos(3v)
(1)
y(u,v)=2sinhusinv+2/3sinh(3u)sin(3v)
(2)
z(u,v)=2cosh(2u)cos(2v).
(3)

The coefficients of the first fundamental form of this parameterization are given by

E=8cosh^2u[cosh(4u)-cos(4v)]
(4)
F=0
(5)
G=8cosh^2u[cosh(4u)-cos(4v)],
(6)

and the coefficients of the second fundamental form are

e=-4cos(2v)sinh(2u)
(7)
f=4cosh(2u)sin(2v)
(8)
g=4sinh(2u)cos(2v),
(9)

giving area element

 dS=2sqrt(2[cos(4v)-cosh(4u)])du ^ dv
(10)

and Gaussian and mean curvatures are

K=(sech^4u)/(8[cos(4v)-cosh(4u)])
(11)
H=0.
(12)

A slightly different version of this surface (also algebraic of order 15 but with slightly different coefficients) can also be obtained from the Enneper-Weierstrass parameterization with

f=2-2z^(-4)
(13)
g=z,
(14)

which gives a parameterization of the form

x(r,phi)=(2(r^2-1)cosphi)/r-(2(r^6-1)cos(3phi))/(3r^3)
(15)
y(r,phi)=-(6r^2(r^2-1)sinphi+2(r^6-1)sin(3phi))/(3r^3)
(16)
z(r,phi)=(2(r^4+1)cos(2phi))/(r^2).
(17)

The coefficients of the first fundamental form of this parameterization are given by

E=(4(1+r^2)^2[1+r^8-2r^4cos(4phi)])/(r^8)
(18)
F=0
(19)
G=(4(1+r^2)^2[1+r^8-2r^4cos(4phi)])/(r^6),
(20)

and the coefficients of the second fundamental form are

e=(4(r^4-1)cos(2phi))/(r^4)
(21)
f=(4(1+r^4)sin(2phi))/(r^3)
(22)
g=(4(r^4-1)cos(2phi))/(r^2),
(23)

giving area element

 dS=(4(1+r^2)^2[1+r^8-2r^4cos(4phi)])/(r^7)du ^ dv
(24)

and Gaussian and mean curvatures are

K=-(r^8)/((1+r^2)^4[1+r^8-2r^4cos(4phi)])
(25)
H=0.
(26)

Henneberg's minimal surface is a nonorientable surface defined over the unit disk. It is an immersion of the real projective plane that has been multiply punctured (once at the origin and four times at each of the roots of the metric). Consequently, it is not a complete surface. The total curvature is -2pi.


See also

Enneper-Weierstrass Parameterization, Minimal Surface

Explore with Wolfram|Alpha

References

Darboux, G. §226 in Leçons sur la théorie générale des surfaces et les applications géométriques du calcul infinitesimal. Paris: Gauthier-Villars, 1941.Eisenhart, L. P. A Treatise on the Differential Geometry of Curves and Surfaces. New York: Dover, p. 267, 1960.Gray, A. "Henneberg's Minimal Surface." Modern Differential Geometry of Curves and Surfaces with Mathematica, 2nd ed. Boca Raton, FL: CRC Press, pp. 691-692, 1997.JavaView. "Classic Surfaces from Differential Geometry: Henneberg." http://www-sfb288.math.tu-berlin.de/vgp/javaview/demo/surface/common/PaSurface_Henneberg.html.Nitsche, J. C. C. Introduction to Minimal Surfaces. Cambridge, England: Cambridge University Press, p. 144, 1989.

Cite this as:

Weisstein, Eric W. "Henneberg's Minimal Surface." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/HennebergsMinimalSurface.html

Subject classifications