TOPICS
Search

Gaussian Quadrature


Seeks to obtain the best numerical estimate of an integral by picking optimal abscissas x_i at which to evaluate the function f(x). The fundamental theorem of Gaussian quadrature states that the optimal abscissas of the m-point Gaussian quadrature formulas are precisely the roots of the orthogonal polynomial for the same interval and weighting function. Gaussian quadrature is optimal because it fits all polynomials up to degree 2m-1 exactly. Slightly less optimal fits are obtained from Radau quadrature and Laguerre-Gauss quadrature.

W(x)intervalx_i are roots of
1(-1,1)P_n(x)
e^(-t)(0,infty)L_n(x)
e^(-t^2)(-infty,infty)H_n(x)
(1-t^2)^(-1/2)(-1,1)T_n(x)
(1-t^2)^(1/2)(-1,1)U_n(x)
x^(1/2)(0,1)x^(-1/2)P_(2n+1)(sqrt(x))
x^(-1/2)(0,1)P_(2n)(sqrt(x))

To determine the weights corresponding to the Gaussian abscissas x_i, compute a Lagrange interpolating polynomial for f(x) by letting

 pi(x)=product_(j=1)^m(x-x_j)
(1)

(where Chandrasekhar 1967 uses F instead of pi), so

 pi^'(x_j)=[(dpi)/(dx)]_(x=x_j)=product_(i=1; i!=j)^m(x_j-x_i).
(2)

Then fitting a Lagrange interpolating polynomial through the m points gives

 phi(x)=sum_(j=1)^m(pi(x))/((x-x_j)pi^'(x_j))f(x_j)
(3)

for arbitrary points x. We are therefore looking for a set of points x_j and weights w_j such that for a weighting function W(x),

int_a^bphi(x)W(x)dx=int_a^bsum_(j=1)^(m)(pi(x)W(x))/((x-x_j)pi^'(x_j))dxf(x_j)
(4)
=sum_(j=1)^(m)w_jf(x_j),
(5)

with weight

 w_j=1/(pi^'(x_j))int_a^b(pi(x)W(x))/(x-x_j)dx.
(6)

The weights w_j are sometimes also called the Christoffel numbers (Chandrasekhar 1967). For orthogonal polynomials phi_j(x) with j=1, ..., n,

 phi_j(x)=A_jpi(x)
(7)

(Hildebrand 1956, p. 322), where A_n is the coefficient of x^n in phi_n(x), then

w_j=1/(phi_n^'(x_j))int_a^bW(x)(phi(x))/(x-x_j)dx
(8)
=-(A_(n+1)gamma_n)/(A_nphi_n^'(x_j)phi_(n+1)(x)),
(9)

where

 gamma_m=int[phi_m(x)]^2W(x)dx.
(10)

Using the relationship

 phi_(n+1)(x_i)=-(A_(n+1)A_(n-1))/(A_n^2)(gamma_n)/(gamma_(n-1))phi_(n-1)(x_i)
(11)

(Hildebrand 1956, p. 323) gives

 w_j=(A_n)/(A_(n-1))(gamma_(n-1))/(phi_n^'(x_j)phi_(n-1)(x_j)).
(12)

(Note that Press et al. 1992 omit the factor A_n/A_(n-1).) In Gaussian quadrature, the weights are all positive. The error is given by

E_n=(f^((2n))(xi))/((2n)!)int_a^bW(x)[pi(x)]^2dx
(13)
=(gamma_n)/(A_n^2)(f^((2n))(xi))/((2n)!),
(14)

where a<xi<b (Hildebrand 1956, pp. 320-321).

Other curious identities are

 sum_(k=0)^n([phi_k(x)]^2)/(gamma_k)=(A_n)/(A_(n+1)gamma_n)[phi_(n+1)^'(x)phi_n(x)-phi_n^'(x)phi_(n+1)(x)]
(15)

and

sum_(k=0)^(n)([phi_k(x_j)]^2)/(gamma_k)=-(A_nphi_n^'(x_j)phi_(n+1)(x_j))/(A_(n+1)gamma_n)
(16)
=1/(w_j)
(17)

(Hildebrand 1956, p. 323).

In the notation of Szegö (1975), let x_(1n)<...<x_(nn) be an ordered set of points in [a,b], and let lambda_(1n), ..., lambda_(nn) be a set of real numbers. If f(x) is an arbitrary function on the closed interval [a,b], write the Gaussian quadrature as

 Q_n(f)=sum_(nu=1)^nlambda_(nun)f(x_(nun)).
(18)

Here x_(nun) are the abscissas and lambda_(nun) are the Cotes numbers.


See also

Chebyshev Quadrature, Chebyshev-Gauss Quadrature, Chebyshev-Radau Quadrature, Fundamental Theorem of Gaussian Quadrature, Hermite-Gauss Quadrature, Jacobi-Gauss Quadrature, Laguerre-Gauss Quadrature, Legendre-Gauss Quadrature, Lobatto Quadrature, Radau Quadrature

Explore with Wolfram|Alpha

References

Abramowitz, M. and Stegun, I. A. (Eds.). Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, pp. 887-888, 1972.Acton, F. S. Numerical Methods That Work, 2nd printing. Washington, DC: Math. Assoc. Amer., p. 103, 1990.Arfken, G. "Appendix 2: Gaussian Quadrature." Mathematical Methods for Physicists, 3rd ed. Orlando, FL: Academic Press, pp. 968-974, 1985.Beyer, W. H. CRC Standard Mathematical Tables, 28th ed. Boca Raton, FL: CRC Press, p. 461, 1987.Chandrasekhar, S. An Introduction to the Study of Stellar Structure. New York: Dover, 1967.Gauss, C. F. "Methodus nova integralium valores per approximationem inveniendi." Commentationes Societatis regiae scientarium Gottingensis recentiores 3, 39-76, 1814. Reprinted in Werke, Vol. 3. New York: George Olms, p. 163, 1981.Golub, G. H. and Welsh, J. H. "Calculation of Gauss Quadrature Rules." Math. Comput. 23, 221-230, 1969.Hildebrand, F. B. Introduction to Numerical Analysis. New York: McGraw-Hill, pp. 319-323, 1956.Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; and Vetterling, W. T. "Gaussian Quadratures and Orthogonal Polynomials." §4.5 in Numerical Recipes in FORTRAN: The Art of Scientific Computing, 2nd ed. Cambridge, England: Cambridge University Press, pp. 140-155, 1992.Stroud, A. H. and Secrest, D. Gaussian Quadrature Formulas. Englewood Cliffs, NJ: Prentice-Hall, 1966.Szegö, G. Orthogonal Polynomials, 4th ed. Providence, RI: Amer. Math. Soc., pp. 37-48 and 340-349, 1975.Whittaker, E. T. and Robinson, G. "Gauss's Formula of Numerical Integration." §80 in The Calculus of Observations: A Treatise on Numerical Mathematics, 4th ed. New York: Dover, pp. 152-163, 1967.

Referenced on Wolfram|Alpha

Gaussian Quadrature

Cite this as:

Weisstein, Eric W. "Gaussian Quadrature." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/GaussianQuadrature.html

Subject classifications