TOPICS
Search

Gauss-Kuzmin Distribution


The Gauss-Kuzmin distribution is the distribution of occurrences of a positive integer k in the continued fraction of a random (or "generic") real number.

Consider xi_n defined for a real number x by

xi_n=a_n+1/(a_(n+1)+1/(a_(n+2)+...))
(1)
=a_n+1/(xi_(n+1)),
(2)

so 1/xi_(n+1) is the fractional part of xi_n. This can be defined recursively through

 a_n=|_1/(xi_(n-1))_|
(3)

and

 xi_n=1/(xi_(n-1))-a_n
(4)

with xi_(-1)=x and a_n simply the nth term of the continued fraction x=[a_0;a_1,...].

GaussKuzminHistogram

The distribution frac(xi_n) was considered by Gauss in a letter to Laplace dated January 30, 1812. In this letter, Gauss said that he could prove by a simple argument that if F_n(x), sometimes denoted omega_n(x) (Havil 2003, p. 156), is the probability that fracxi_n<x for a random x, then

 lim_(n->infty)F_n(x)=lg(1+x)
(5)

(Rockett and Szüsz 1992, pp. 151-152; Knuth 1998, p. 341; Havil 2003, p. 157). Histograms of frac(xi_n) are illustrated above for 5000 terms of pi, the Euler-Mascheroni constant gamma, Catalan's constant K, and the natural logarithm of 2 ln2.

However, Gauss was unable to describe the behavior of the correction term in

 F_n(x)=lg(1+x)+epsilon_n.
(6)

Kuz'min (1928) published the first analysis of the asymptotic behavior of F_n(x), obtaining

 F_n(x)=lg(1+x)+O(q^(sqrt(n)))
(7)

with 0<q<1. Using a different method, Lévy (1929) obtained

 F_n(x)=lg(1+x)+O(q^n)
(8)

with q=0.7. Wirsing (1974) subsequently showed, among other results, that

 lim_(n->infty)(F_n(x)-lg(1+x))/((-lambda)^n)=Psi(x),
(9)

where lambda is a constant known as Gauss-Kuzmin-Wirsing constant and Psi(x) is an analytic function with Psi(0)=Psi(1)=0.

GaussKuzminDistribution

It follows from Gauss's result that

P(a_n=k)=-lg[1-1/((k+1)^2)]
(10)
=lg[1+1/(k(k+2))]
(11)

(Bailey et al. 1997; Havil 2003, p. 158), where lgx=log_2x and "Kuzmin" is sometimes also written as "Kuz'min." The plot above shows the distribution of the first 500 terms in the continued fractions of pi, sin1, the Euler-Mascheroni constant gamma, and the Copeland-Erdős constant C. The distribution is properly normalized, since

 -sum_(k=1)^inftylg[1-1/((k+1)^2)]=1.
(12)

See also

Continued Fraction, Gauss-Kuzmin-Wirsing Constant

Explore with Wolfram|Alpha

References

Babenko, K. I. "On a Problem of Gauss." Soviet Math. Dokl. 19, 136-140, 1978.Bailey, D. H.; Borwein, J. M.; and Crandall, R. E. "On the Khintchine Constant." Math. Comput. 66, 417-431, 1997.Daudé, H.; Flajolet, P.; and Vallé, B. "An Average-Case Analysis of the Gaussian Algorithm for Lattice Reduction." Combin. Probab. Comput. 6, 397-433, 1997.Durner, A. "On a Theorem of Gauss-Kuzmin-Lévy." Arch. Math. 58, 251-256, 1992.Finch, S. R. "Gauss-Kuzmin-Wirsing Constant." §2.17 in Mathematical Constants. Cambridge, England: Cambridge University Press, pp. 151-156, 2003.Havil, J. Gamma: Exploring Euler's Constant. Princeton, NJ: Princeton University Press, pp. 155-159, 2003.Khinchin, A. Ya. "Gauss's Problem and Kuz'min's Theorem." §15 in Continued Fractions. New York: Dover, pp. 71-86, 1997.Knuth, D. E. The Art of Computer Programming, Vol. 2: Seminumerical Algorithms, 3rd ed. Reading, MA: Addison-Wesley, 1998.Kuz'min, R. O. "A Problem of Gauss." Dokl. Akad. Nauk, Ser. A, 375-380, 1928.Kuz'min, R. O. "Sur un problème de Gauss." Anni Congr. Intern. Bologne 6, 83-89, 1928.Lévy, P. "Sur les lois de probabilité dont dependent les quotients complets et incomplets d'une fraction continue." Bull. Soc. Math. France 57, 178-194, 1929.Lévy, P. "Sur les lois de probabilité dont dependent les quotients complets et incomplets d'une fraction continue." Bull. Soc. Math. France 57, 178-194, 1929.Rockett, A. M. and Szüsz, P. "The Gauss-Kuzmin Theorem." §5.5 in Continued Fractions. New York: World Scientific, pp. 151-155, 1992.Wirsing, E. "On the Theorem of Gauss-Kuzmin-Lévy and a Frobenius-Type Theorem for Function Spaces." Acta Arith. 24, 507-528, 1974.

Referenced on Wolfram|Alpha

Gauss-Kuzmin Distribution

Cite this as:

Weisstein, Eric W. "Gauss-Kuzmin Distribution." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/Gauss-KuzminDistribution.html

Subject classifications