TOPICS
Search

Cauchy Integral Theorem


If f(z) is analytic in some simply connected region R, then

 ∮_gammaf(z)dz=0
(1)

for any closed contour gamma completely contained in R. Writing z as

 z=x+iy
(2)

and f(z) as

 f(z)=u+iv
(3)

then gives

∮_gammaf(z)dz=int_gamma(u+iv)(dx+idy)
(4)
=int_gammaudx-vdy+iint_gammavdx+udy.
(5)

From Green's theorem,

int_gammaf(x,y)dx-g(x,y)dy=-intint((partialg)/(partialx)+(partialf)/(partialy))dxdy
(6)
int_gammaf(x,y)dx+g(x,y)dy=intint((partialg)/(partialx)-(partialf)/(partialy))dxdy,
(7)

so (◇) becomes

 ∮_gammaf(z)dz=-intint((partialv)/(partialx)+(partialu)/(partialy))dxdy+iintint((partialu)/(partialx)-(partialv)/(partialy))dxdy.
(8)

But the Cauchy-Riemann equations require that

(partialu)/(partialx)=(partialv)/(partialy)
(9)
(partialu)/(partialy)=-(partialv)/(partialx),
(10)

so

 ∮_gammaf(z)dz=0,
(11)

Q.E.D.

For a multiply connected region,

 ∮_(C_1)f(z)dz=∮_(C_2)f(z)dz.
(12)

See also

Argument Principle, Cauchy Integral Formula, Contour Integral, Morera's Theorem, Residue Theorem

Explore with Wolfram|Alpha

References

Arfken, G. "Cauchy's Integral Theorem." §6.3 in Mathematical Methods for Physicists, 3rd ed. Orlando, FL: Academic Press, pp. 365-371, 1985.Kaplan, W. "Integrals of Analytic Functions. Cauchy Integral Theorem." §9.8 in Advanced Calculus, 4th ed. Reading, MA: Addison-Wesley, pp. 594-598, 1991.Knopp, K. "Cauchy's Integral Theorem." Ch. 4 in Theory of Functions Parts I and II, Two Volumes Bound as One, Part I. New York: Dover, pp. 47-60, 1996.Krantz, S. G. "The Cauchy Integral Theorem and Formula." §2.3 in Handbook of Complex Variables. Boston, MA: Birkhäuser, pp. 26-29, 1999.Morse, P. M. and Feshbach, H. Methods of Theoretical Physics, Part I. New York: McGraw-Hill, pp. 363-367, 1953.Woods, F. S. "Integral of a Complex Function." §145 in Advanced Calculus: A Course Arranged with Special Reference to the Needs of Students of Applied Mathematics. Boston, MA: Ginn, pp. 351-352, 1926.

Referenced on Wolfram|Alpha

Cauchy Integral Theorem

Cite this as:

Weisstein, Eric W. "Cauchy Integral Theorem." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/CauchyIntegralTheorem.html

Subject classifications