TOPICS
Search

Search Results for ""


61 - 70 of 3197 for chess mathSearch Results
Let L=(L, ^ , v ) and K=(K, ^ , v ) be lattices, and let h:L->K. If K=L and h is a join-homomorphism, then we call h a join-endomorphism.
Let L=(L, ^ , v ) and K=(K, ^ , v ) be lattices, and let h:L->K. Then the mapping h is a join-homomorphism provided that for any x,y in L, h(x v y)=h(x) v h(y). It is also ...
Let L=(L, ^ , v ) and K=(K, ^ , v ) be lattices, and let h:L->K. If h is one-to-one and onto, then it is a join-isomorphism if it preserves joins.
A lattice automorphism is a lattice endomorphism that is also a lattice isomorphism.
Let L=(L, ^ , v ) and K=(K, ^ , v ) be lattices, and let h:L->K. A lattice endomorphism is a mapping h:L->L that preserves both meets and joins.
Let L=(L, ^ , v ) and K=(K, ^ , v ) be lattices, and let h:L->K. A lattice isomorphism is a one-to-one and onto lattice homomorphism.
Let L=(L, ^ , v ) be a lattice, and let f,g:L->L. Then the pair (f,g) is a polarity of L if and only if f is a decreasing join-endomorphism and g is an increasing ...
Let L=(L, ^ , v ) be a lattice, and let tau subset= L^2. Then tau is a tolerance if and only if it is a reflexive and symmetric sublattice of L^2. Tolerances of lattices, ...
Let L=(L, ^ , v ) and K=(K, ^ , v ) be lattices, and let h:L->K. If h is one-to-one and is a meet-homomorphism, then h is a meet-embedding.
Let L=(L, ^ , v ) and K=(K, ^ , v ) be lattices, and let h:L->K. A meet-endomorphism of L is a meet-homomorphism from L to L.
1 ... 4|5|6|7|8|9|10 ... 320 Previous Next

...