TOPICS
Search

Search Results for ""


6521 - 6530 of 13135 for www.bong88.com login %...Search Results
In bispherical coordinates, Laplace's equation becomes (1) Attempt separation of variables by plugging in the trial solution f(u,v,phi)=sqrt(coshv-cosu)U(u)V(v)Psi(psi), (2) ...
In spherical coordinates, the scale factors are h_r=1, h_theta=rsinphi, h_phi=r, and the separation functions are f_1(r)=r^2, f_2(theta)=1, f_3(phi)=sinphi, giving a Stäckel ...
In toroidal coordinates, Laplace's equation becomes (1) Attempt separation of variables by plugging in the trial solution f(u,v,phi)=sqrt(coshu-cosv)U(u)V(v)Psi(psi), (2) ...
Laplace's integral is one of the following integral representations of the Legendre polynomial P_n(x), P_n(x) = 1/piint_0^pi(du)/((x+sqrt(x^2-1)cosu)^(n+1))du (1) = ...
The Laplacian for a scalar function phi is a scalar differential operator defined by (1) where the h_i are the scale factors of the coordinate system (Weinberg 1972, p. 109; ...
The Laplacian matrix, sometimes also called the admittance matrix (Cvetković et al. 1998, Babić et al. 2002) or Kirchhoff matrix, of a graph G, where G=(V,E) is an ...
The Laplacian polynomial is the characteristic polynomial of the Laplacian matrix. The second smallest root of the Laplacian polynomial of a graph g (counting multiple values ...
The Laplacian spectral radius of a finite graph is defined as the largest value of its Laplacian spectrum, i.e., the largest eigenvalue of the Laplacian matrix (Lin et al. ...
The Laplacian spectral ratio R_L(G) of a connected graph G is defined as the ratio of its Laplacian spectral radius to its algebraic connectivity. If a connected graph of ...
A wide variety of large numbers crop up in mathematics. Some are contrived, but some actually arise in proofs. Often, it is possible to prove existence theorems by deriving ...
1 ... 650|651|652|653|654|655|656 ... 1314 Previous Next

...