Search Results for ""
6521 - 6530 of 13135 for www.bong88.com login %...Search Results
In bispherical coordinates, Laplace's equation becomes (1) Attempt separation of variables by plugging in the trial solution f(u,v,phi)=sqrt(coshv-cosu)U(u)V(v)Psi(psi), (2) ...
In spherical coordinates, the scale factors are h_r=1, h_theta=rsinphi, h_phi=r, and the separation functions are f_1(r)=r^2, f_2(theta)=1, f_3(phi)=sinphi, giving a Stäckel ...
In toroidal coordinates, Laplace's equation becomes (1) Attempt separation of variables by plugging in the trial solution f(u,v,phi)=sqrt(coshu-cosv)U(u)V(v)Psi(psi), (2) ...
Laplace's integral is one of the following integral representations of the Legendre polynomial P_n(x), P_n(x) = 1/piint_0^pi(du)/((x+sqrt(x^2-1)cosu)^(n+1))du (1) = ...
The Laplacian for a scalar function phi is a scalar differential operator defined by (1) where the h_i are the scale factors of the coordinate system (Weinberg 1972, p. 109; ...
The Laplacian matrix, sometimes also called the admittance matrix (Cvetković et al. 1998, Babić et al. 2002) or Kirchhoff matrix, of a graph G, where G=(V,E) is an ...
The Laplacian polynomial is the characteristic polynomial of the Laplacian matrix. The second smallest root of the Laplacian polynomial of a graph g (counting multiple values ...
The Laplacian spectral radius of a finite graph is defined as the largest value of its Laplacian spectrum, i.e., the largest eigenvalue of the Laplacian matrix (Lin et al. ...
The Laplacian spectral ratio R_L(G) of a connected graph G is defined as the ratio of its Laplacian spectral radius to its algebraic connectivity. If a connected graph of ...
A wide variety of large numbers crop up in mathematics. Some are contrived, but some actually arise in proofs. Often, it is possible to prove existence theorems by deriving ...
...
View search results from all Wolfram sites (653157 matches)

