Search Results for ""
3091 - 3100 of 13135 for www.bong88.com login %...Search Results
The divisor function sigma_k(n) for n an integer is defined as the sum of the kth powers of the (positive integer) divisors of n, sigma_k(n)=sum_(d|n)d^k. (1) It is ...
By analogy with the divisor function sigma_1(n), let pi(n)=product_(d|n)d (1) denote the product of the divisors d of n (including n itself). For n=1, 2, ..., the first few ...
A generalization by Kronecker of Kummer's theory of prime ideal factors. A divisor on a full subcategory C of mod(A) is an additive mapping chi on C with values in a ...
A binary relation associated with an instance of the stable marriage problem. Stable marriages correspond to vertices with outdegree 0 in the divorce digraph (Skiena 1990, p. ...
Let J_nu(z) be a Bessel function of the first kind, Y_nu(z) a Bessel function of the second kind, and K_nu(z) a modified Bessel function of the first kind. Also let R[z]>0 ...
In order to find integers x and y such that x^2=y^2 (mod n) (1) (a modified form of Fermat's factorization method), in which case there is a 50% chance that GCD(n,x-y) is a ...
sum_(k=-n)^n(-1)^k(n+b; n+k)(n+c; c+k)(b+c; b+k)=(Gamma(b+c+n+1))/(n!Gamma(b+1)Gamma(c+1)), where (n; k) is a binomial coefficient and Gamma(x) is a gamma function.
_3F_2[n,-x,-y; x+n+1,y+n+1] =Gamma(x+n+1)Gamma(y+n+1)Gamma(1/2n+1)Gamma(x+y+1/2n+1) ×Gamma(n+1)Gamma(x+y+n+1)Gamma(x+1/2n+1)Gamma(y+1/2n+1), (1) where _3F_2(a,b,c;d,e;z) is a ...
A formula for the Bell polynomial and Bell numbers. The general formula states that B_n(x)=e^(-x)sum_(k=0)^infty(k^n)/(k!)x^k, (1) where B_n(x) is a Bell polynomial (Roman ...
The dodecadodecahedral graph is the skeleton of the dodecadodecahedron, great dodecahemicosahedron, and small dodecahemicosahedron. It is illustrated above in several ...
...
View search results from all Wolfram sites (653157 matches)

