TOPICS
Search

Search Results for ""


12701 - 12710 of 13135 for www.bong88.com login %...Search Results
The Weierstrass constant is defined as the value sigma(1|1,i)/2, where sigma(z|omega_1,omega_2) is the Weierstrass sigma function with half-periods omega_1 and omega_2. ...
The Weierstrass elliptic functions (or Weierstrass P-functions, voiced "p-functions") are elliptic functions which, unlike the Jacobi elliptic functions, have a second-order ...
There are (at least) two mathematical objects known as Weierstrass forms. The first is a general form into which an elliptic curve over any field K can be transformed, given ...
The pathological function f_a(x)=sum_(k=1)^infty(sin(pik^ax))/(pik^a) (originally defined for a=2) that is continuous but differentiable only on a set of points of measure ...
Let sum_(n=1)^(infty)u_n(x) be a series of functions all defined for a set E of values of x. If there is a convergent series of constants sum_(n=1)^inftyM_n, such that ...
The operator e^(nut^2/2) which satisfies e^(nut^2/2)p(x)=1/(sqrt(2pinu))int_(-infty)^inftye^(-u^2/(2nu))p(x+u)du for nu>0.
A pole of multiplicity less than p+1.
If 0<=a,b,c,d<=1, then (1-a)(1-b)(1-c)(1-d)+a+b+c+d>=1. This is a special case of the general inequality product_(i=1)^n(1-a_i)+sum_(i=1)^na_i>=1 for 0<=a_1,a_2,...,a_n<=1. ...
Let any finite or infinite set of points having no finite limit point be prescribed, and associate with each of its points a definite positive integer as its order. Then ...
The quasiperiodic function defined by d/(dz)lnsigma(z;g_2,g_3)=zeta(z;g_2,g_3), (1) where zeta(z;g_2,g_3) is the Weierstrass zeta function and lim_(z->0)(sigma(z))/z=1. (2) ...

...