TOPICS
Search

Search Results for ""


6761 - 6770 of 13135 for visualized mathematicsSearch Results
The (lower) irredundance number ir(G) of a graph G is the minimum size of a maximal irredundant set of vertices in G. The upper irredundance number is defined as the maximum ...
The term isocline derives from the Greek words for "same slope." For a first-order ordinary differential equation y^'=f(t,y) is, a curve with equation f(t,y)=C for some ...
A finite set of contraction maps w_i for i=1, 2, ..., N, each with a contractivity factor s<1, which map a compact metric space onto itself. It is the basis for fractal image ...
If, after constructing a difference table, no clear pattern emerges, turn the paper through an angle of 60 degrees and compute a new table. If necessary, repeat the process. ...
Jacobi-Gauss quadrature, also called Jacobi quadrature or Mehler quadrature, is a Gaussian quadrature over the interval [-1,1] with weighting function ...
The Janko-Kharaghani-Tonchev graph is a strongly regular graph on 324 vertices and 24786 edges. It has regular parameters (nu,k,lambda,mu)=(324,153,72,72). It is implemented ...
The Janko-Kharaghani graphs are two strongly regular graph on 936 and 1800 vertices. They have regular parameters (nu,k,lambda,mu)=(936,375,150,150) and (1800,1029,588,588), ...
An illusion named after the psychologist Joseph Jastrow. In the above figure, the left edges of the laminas A and B are colinear, creating an illusion of different size. ...
A complicated polynomial root-finding algorithm which is used in the IMSL® (IMSL, Houston, TX) library and which Press et al. (1992) describe as "practically a standard in ...
A semiprime which English economist and logician William Stanley Jevons incorrectly believed no one else would be able to factor. According to Jevons (1874, p. 123), "Can the ...
1 ... 674|675|676|677|678|679|680 ... 1314 Previous Next

...