Search Results for ""
10521 - 10530 of 13135 for visualized mathematicsSearch Results
A symmetric function on n variables x_1, ..., x_n is a function that is unchanged by any permutation of its variables. In most contexts, the term "symmetric function" refers ...
Any square matrix A can be written as a sum A=A_S+A_A, (1) where A_S=1/2(A+A^(T)) (2) is a symmetric matrix known as the symmetric part of A and A_A=1/2(A-A^(T)) (3) is an ...
A second-tensor rank symmetric tensor is defined as a tensor A for which A^(mn)=A^(nm). (1) Any tensor can be written as a sum of symmetric and antisymmetric parts A^(mn) = ...
Symmetry operations include the improper rotation, inversion operation, mirror plane, and rotation. Together, these operations create 32 crystal classes corresponding to the ...
The Szilassi polyhedron is a heptahedron that is topologically equivalent to a torus and for which every pair of faces has a polygon edge in common. The Szilassi polyhedron ...
A T_1-space is a topological space fulfilling the T1-separation axiom: For any two points x,y in X there exists two open sets U and V such that x in U and y not in U, and y ...
A topological space fulfilling the T_2-axiom: i.e., any two points have disjoint neighborhoods. In the terminology of Alexandroff and Hopf (1972), a T_2-space is called a ...
Prellberg (2001) noted that the limit c=lim_(n->infty)(T_n)/(B_nexp{1/2[W(n)]^2})=2.2394331040... (OEIS A143307) exists, where T_n is a Takeuchi number, B_n is a Bell number, ...
Let A denote an R-algebra, so that A is a vector space over R and A×A->A (1) (x,y)|->x·y, (2) where x·y is vector multiplication which is assumed to be bilinear. Now define ...
A coordinate system (mu,nu,psi) given by the coordinate transformation x = (mucospsi)/(mu^2+nu^2) (1) y = (musinpsi)/(mu^2+nu^2) (2) z = nu/(mu^2+nu^2) (3) and defined for ...
...
View search results from all Wolfram sites (61339 matches)

