Search Results for ""
11 - 20 of 191 for trigonometrySearch Results
The exact values of cos(pi/18) and sin(pi/18) can be given by infinite nested radicals sin(pi/(18))=1/2sqrt(2-sqrt(2+sqrt(2+sqrt(2-...)))), where the sequence of signs +, +, ...
By the definition of the functions of trigonometry, the sine of pi/2 is equal to the y-coordinate of the point with polar coordinates (r,theta)=(1,pi/2), giving sin(pi/2)=1. ...
Values of the trigonometric functions can be expressed exactly for integer multiples of pi/20. For cosx, cos(pi/(20)) = 1/4sqrt(8+2sqrt(10+2sqrt(5))) (1) cos((3pi)/(20)) = ...
cos(pi/(24)) = 1/2sqrt(2+sqrt(2+sqrt(3))) (1) cos((5pi)/(24)) = 1/2sqrt(2+sqrt(2-sqrt(3))) (2) cos((7pi)/(24)) = 1/2sqrt(2-sqrt(2-sqrt(3))) (3) cos((11pi)/(24)) = ...
Construction of the angle pi/3=60 degrees produces a 30-60-90 triangle, which has angles theta=pi/3 and theta/2=pi/6. From the above diagram, write y=sintheta for the ...
cos(pi/(30)) = 1/4sqrt(7+sqrt(5)+sqrt(6(5+sqrt(5)))) (1) cos((7pi)/(30)) = 1/4sqrt(7-sqrt(5)+sqrt(6(5-sqrt(5)))) (2) cos((11pi)/(30)) = 1/4sqrt(7+sqrt(5)-sqrt(6(5+sqrt(5)))) ...
cos(pi/(32)) = 1/2sqrt(2+sqrt(2+sqrt(2+sqrt(2)))) (1) cos((3pi)/(32)) = 1/2sqrt(2+sqrt(2+sqrt(2-sqrt(2)))) (2) cos((5pi)/(32)) = 1/2sqrt(2+sqrt(2-sqrt(2-sqrt(2)))) (3) ...
Construction of the angle pi/6=30 degrees produces a 30-60-90 triangle, which has angles theta=pi/6 and 2theta=pi/3. From the above diagram, write y=sintheta for the vertical ...
cos(pi/8) = 1/2sqrt(2+sqrt(2)) (1) cos((3pi)/8) = 1/2sqrt(2-sqrt(2)) (2) cot(pi/8) = 1+sqrt(2) (3) cot((3pi)/8) = sqrt(2)-1 (4) csc(pi/8) = sqrt(4+2sqrt(2)) (5) csc((3pi)/8) ...
By the definition of the trigonometric functions, cos0 = 1 (1) cot0 = infty (2) csc0 = infty (3) sec0 = 1 (4) sin0 = 0 (5) tan0 = 0. (6)
...