Search Results for ""
6731 - 6740 of 13135 for triangle geometrySearch Results
A manifold is said to be orientable if it can be given an orientation. Note the distinction between an "orientable manifold" and an "oriented manifold," where the former ...
An important result in ergodic theory. It states that any two "Bernoulli schemes" with the same measure-theoretic entropy are measure-theoretically isomorphic.
The ordinary differential equation
An orthogonal array OA(k,s) is a k×s^2 array with entries taken from an s-set S having the property that in any two rows, each ordered pair of symbols from S occurs exactly ...
An orthogonal basis of vectors is a set of vectors {x_j} that satisfy x_jx_k=C_(jk)delta_(jk) and x^mux_nu=C_nu^mudelta_nu^mu, where C_(jk), C_nu^mu are constants (not ...
Two functions f(x) and g(x) are orthogonal over the interval a<=x<=b with weighting function w(x) if <f(x)|g(x)>=int_a^bf(x)g(x)w(x)dx=0. (1) If, in addition, ...
Two representations of a group chi_i and chi_j are said to be orthogonal if sum_(R)chi_i(R)chi_j(R)=0 for i!=j, where the sum is over all elements R of the representation.
In a space E equipped with a symmetric, differential k-form, or Hermitian form, the orthogonal sum is the direct sum of two subspaces V and W, which are mutually orthogonal. ...
Two vectors u and v whose dot product is u·v=0 (i.e., the vectors are perpendicular) are said to be orthogonal. In three-space, three vectors can be mutually perpendicular.
Let G be a group and theta n permutation of G. Then theta is an orthomorphism of G if the self-mapping nu of G defined by nu(x)=x^(-1)theta(x) is also an permutation of G.
...
View search results from all Wolfram sites (20519 matches)

