Search Results for ""
1461 - 1470 of 1924 for sum over paths FeynmanSearch Results
A k-subset is a subset of a set on n elements containing exactly k elements. The number of k-subsets on n elements is therefore given by the binomial coefficient (n; k). For ...
A q-analog of the beta function B(a,b) = int_0^1t^(a-1)(1-t)^(b-1)dt (1) = (Gamma(a)Gamma(b))/(Gamma(a+b)), (2) where Gamma(z) is a gamma function, is given by B_q(a,b) = ...
There are several q-analogs of the cosine function. The two natural definitions of the q-cosine defined by Koekoek and Swarttouw (1998) are given by cos_q(z) = ...
Given a real number q>1, the series x=sum_(n=0)^inftya_nq^(-n) is called the q-expansion, or beta-expansion (Parry 1957), of the positive real number x if, for all n>=0, ...
A q-analog of Gauss's theorem due to Jacobi and Heine, _2phi_1(a,b;c;q,c/(ab))=((c/a;q)_infty(c/b;q)_infty)/((c;q)_infty(c/(ab);q)_infty) (1) for |c/(ab)|<1 (Gordon and ...
The q-analog of integration is given by int_0^1f(x)d(q,x)=(1-q)sum_(i=0)^inftyf(q^i)q^i, (1) which reduces to int_0^1f(x)dx (2) in the case q->1^- (Andrews 1986 p. 10). ...
There are several q-analogs of the sine function. The two natural definitions of the q-sine defined by Koekoek and Swarttouw (1998) are given by sin_q(z) = ...
Ahmed's integral is the definite integral int_0^1(tan^(-1)(sqrt(x^2+2)))/(sqrt(x^2+2)(x^2+1))dx=5/(96)pi^2 (OEIS A096615; Ahmed 2002; Borwein et al. 2004, pp. 17-20). This is ...
The Borwein integrals are the class of definite integrals defined by I_n=1/piint_0^inftyx^(-(n+1)/2)product_(k=1,3,...)^nsin(x/k)dx for odd n. The integrals are curious ...
Let A^~, B^~, ... be operators. Then the commutator of A^~ and B^~ is defined as [A^~,B^~]=A^~B^~-B^~A^~. (1) Let a, b, ... be constants, then identities include [f(x),x] = 0 ...
...
View search results from all Wolfram sites (33496 matches)

