Search Results for ""
281 - 290 of 1484 for spaceSearch Results
A vector is formally defined as an element of a vector space. In the commonly encountered vector space R^n (i.e., Euclidean n-space), a vector is given by n coordinates and ...
Every smooth manifold M has a tangent bundle TM, which consists of the tangent space TM_p at all points p in M. Since a tangent space TM_p is the set of all tangent vectors ...
On a measure space X, the set of square integrable L2-functions is an L^2-space. Taken together with the L2-inner product with respect to a measure mu, <f,g>=int_Xfgdmu (1) ...
A Hilbert basis for the vector space of square summable sequences (a_n)=a_1, a_2, ... is given by the standard basis e_i, where e_i=delta_(in), with delta_(in) the Kronecker ...
Let a_1, a_2, ..., a_n be scalars not all equal to 0. Then the set S consisting of all vectors X=[x_1; x_2; |; x_n] in R^n such that a_1x_1+a_2x_2+...+a_nx_n=c for c a ...
A linear functional on a real vector space V is a function T:V->R, which satisfies the following properties. 1. T(v+w)=T(v)+T(w), and 2. T(alphav)=alphaT(v). When V is a ...
Given a vector space V, its projectivization P(V), sometimes written P(V-0), is the set of equivalence classes x∼lambdax for any lambda!=0 in V-0. For example, complex ...
Let G be a Lie group and let rho be a group representation of G on C^n (for some natural number n), which is continuous in the sense that the function G×C^n->C^n defined by ...
The Wolfram Physics Project posits the existence of abstract relations between atoms of space whose pattern defines the structure of physical space. In this approach, two ...
The direct limit of the cohomology groups with coefficients in an Abelian group of certain coverings of a topological space.
...