TOPICS
Search

Search Results for ""


61 - 70 of 1004 for scalar productSearch Results
The "perp dot product" a^_|_·b for a and b vectors in the plane is a modification of the two-dimensional dot product in which a is replaced by the perpendicular vector ...
The quintuple product identity, also called the Watson quintuple product identity, states (1) It can also be written (2) or (3) The quintuple product identity can be written ...
The Pippenger product is an unexpected Wallis-like formula for e given by e/2=(2/1)^(1/2)(2/34/3)^(1/4)(4/56/56/78/7)^(1/8)... (1) (OEIS A084148 and A084149; Pippenger 1980). ...
The Cartesian graph product G=G_1 square G_2, also called the graph box product and sometimes simply known as "the" graph product (Beineke and Wilson 2004, p. 104) and ...
For every module M over a unit ring R, the tensor product functor - tensor _RM is a covariant functor from the category of R-modules to itself. It maps every R-module N to N ...
Let (X,A,mu) and (Y,B,nu) be measure spaces, let R be the collection of all measurable rectangles contained in X×Y, and let lambda be the premeasure defined on R by ...
Given a positive nondecreasing sequence 0<lambda_1<=lambda_2<=..., the zeta-regularized product is defined by product_(n=1)^^^inftylambda_n=exp(-zeta_lambda^'(0)), where ...
The Jacobi triple product is the beautiful identity product_(n=1)^infty(1-x^(2n))(1+x^(2n-1)z^2)(1+(x^(2n-1))/(z^2))=sum_(m=-infty)^inftyx^(m^2)z^(2m). (1) In terms of the ...
If 0<=a,b,c,d<=1, then (1-a)(1-b)(1-c)(1-d)+a+b+c+d>=1. This is a special case of the general inequality product_(i=1)^n(1-a_i)+sum_(i=1)^na_i>=1 for 0<=a_1,a_2,...,a_n<=1. ...
The vector space tensor product V tensor W of two group representations of a group G is also a representation of G. An element g of G acts on a basis element v tensor w by ...
1 ... 4|5|6|7|8|9|10 ... 101 Previous Next

...