TOPICS
Search

Search Results for ""


3351 - 3360 of 13131 for quadraticnonresidue.htmlSearch Results
For an ellipse with parametric equations x = acost (1) y = bsint, (2) the negative pedal curve with respect to the origin has parametric equations x_n = ...
The parallel curves for (outward) offset k of an ellipse with semi-axis lengths a and b are given by x_p = (a+(bk)/(sqrt(a^2sin^2t+b^2cos^2t)))cost (1) y_p = ...
The pedal curve of an ellipse with parametric equations x = acost (1) y = bsint (2) and pedal point (x_0,y_0) is given by f = ...
The normal to an ellipse at a point P intersects the ellipse at another point Q. The angle corresponding to Q can be found by solving the equation (P-Q)·(dP)/(dt)=0 (1) for ...
The general ellipsoid, also called a triaxial ellipsoid, is a quadratic surface which is given in Cartesian coordinates by (x^2)/(a^2)+(y^2)/(b^2)+(z^2)/(c^2)=1, (1) where ...
An ellipsoid can be specified parametrically by x = acosusinv (1) y = bsinusinv (2) z = ccosv. (3) The geodesic parameters are then P = sin^2v(b^2cos^2u+a^2sin^2u) (4) Q = ...
Bezdek and Kuperberg (1991) have constructed packings of identical ellipsoids of densities arbitrarily close to ((24sqrt(2)-6sqrt(3)-2pi)pi)/(72)=0.753355... (OEIS A093824), ...
Ellipsoidal calculus is a method for solving problems in control and estimation theory having unknown but bounded errors in terms of sets of approximating ellipsoidal-value ...
The first solution to Lamé's differential equation, denoted E_n^m(x) for m=1, ..., 2n+1. They are also called Lamé functions. The product of two ellipsoidal harmonics of the ...
Ellipsoidal harmonics of the second kind, also known as Lamé functions of the second kind, are variously defined as F_m^p(x)=(2m+1)E_m^p(x) ...
1 ... 333|334|335|336|337|338|339 ... 1314 Previous Next

...