TOPICS
Search

Search Results for ""


9281 - 9290 of 13135 for number theorySearch Results
Informally, self-similar objects with parameters N and s are described by a power law such as N=s^d, where d=(lnN)/(lns) is the "dimension" of the scaling law, known as the ...
An O(nlgn) sorting algorithm which is not quite as fast as quicksort. It is a "sort-in-place" algorithm and requires no auxiliary storage, which makes it particularly concise ...
As shown by Morse and Feshbach (1953), the Helmholtz differential equation is separable in confocal paraboloidal coordinates.
In conical coordinates, Laplace's equation can be written ...
In elliptic cylindrical coordinates, the scale factors are h_u=h_v=sqrt(sinh^2u+sin^2v), h_z=1, and the separation functions are f_1(u)=f_2(v)=f_3(z)=1, giving a Stäckel ...
As shown by Morse and Feshbach (1953) and Arfken (1970), the Helmholtz differential equation is separable in oblate spheroidal coordinates.
The scale factors are h_u=h_v=sqrt(u^2+v^2), h_theta=uv and the separation functions are f_1(u)=u, f_2(v)=v, f_3(theta)=1, given a Stäckel determinant of S=u^2+v^2. The ...
In parabolic cylindrical coordinates, the scale factors are h_u=h_v=sqrt(u^2+v^2), h_z=1 and the separation functions are f_1(u)=f_2(v)=f_3(z)=1, giving Stäckel determinant ...
As shown by Morse and Feshbach (1953) and Arfken (1970), the Helmholtz differential equation is separable in prolate spheroidal coordinates.
The Helmholtz differential equation in spherical coordinates is separable. In fact, it is separable under the more general condition that k^2 is of the form ...
1 ... 926|927|928|929|930|931|932 ... 1314 Previous Next

...