Search Results for ""
12431 - 12440 of 13135 for number theorySearch Results
If J is a simple closed curve in R^2, then the Jordan curve theorem, also called the Jordan-Brouwer theorem (Spanier 1966) states that R^2-J has two components (an "inside" ...
A collection of identities which hold on a Kähler manifold, also called the Hodge identities. Let omega be a Kähler form, d=partial+partial^_ be the exterior derivative, ...
There are several versions of the Kaplan-Yorke conjecture, with many of the higher dimensional ones remaining unsettled. The original Kaplan-Yorke conjecture (Kaplan and ...
d sum OEIS 0 23.10344 A082839 1 16.17696 A082830 2 19.25735 A082831 3 20.56987 A082832 4 21.32746 A082833 5 21.83460 A082834 6 22.20559 A082835 7 22.49347 A082836 8 22.72636 ...
Kepler's folium is a folium curve explored by Kepler in 1609 (Lawrence 1972, p. 151; Gray et al. 2006, p. 85). When used without qualification, the term "folium" sometimes ...
C. Kimberling has extensively tabulated and enumerated the properties of triangle centers (Kimberling 1994, 1998, and online), denoting the nth center in his numbering scheme ...
The 60 Pascal lines of a hexagon inscribed in a conic intersect three at a time through 20 Steiner points, and also three at a time in 60 points known as Kirkman points. Each ...
Let (a)_i and (b)_i be sequences of complex numbers such that b_j!=b_k for j!=k, and let the lower triangular matrices F=(f)_(nk) and G=(g)_(nk) be defined as ...
Lagrange multipliers, also called Lagrangian multipliers (e.g., Arfken 1985, p. 945), can be used to find the extrema of a multivariate function f(x_1,x_2,...,x_n) subject to ...
Lagrange's identity is the algebraic identity (sum_(k=1)^na_kb_k)^2=(sum_(k=1)^na_k^2)(sum_(k=1)^nb_k^2)-sum_(1<=k<j<=n)(a_kb_j-a_jb_k)^2 (1) (Mitrinović 1970, p. 41; Marsden ...
...