Search Results for ""
171 - 180 of 1388 for matrix multiplicationSearch Results
A lower triangular matrix having 0s along the diagonal as well as the upper portion, i.e., a matrix A=[a_(ij)] such that a_(ij)=0 for i<=j. Written explicitly, L=[0 0 ... 0; ...
A mathematical relationship relating f(nx) to f(x) for integer n.
Let Q(x)=Q(x_1,x_2,...,x_n) be an integer-valued n-ary quadratic form, i.e., a polynomial with integer coefficients which satisfies Q(x)>0 for real x!=0. Then Q(x) can be ...
A modulo multiplication group is a finite group M_m of residue classes prime to m under multiplication mod m. M_m is Abelian of group order phi(m), where phi(m) is the ...
Let B, A, and e be square matrices with e small, and define B=A(I+e), (1) where I is the identity matrix. Then the inverse of B is approximately B^(-1)=(I-e)A^(-1). (2) This ...
The minimal polynomial of a matrix A is the monic polynomial in A of smallest degree n such that p(A)=sum_(i=0)^nc_iA^i=0. (1) The minimal polynomial divides any polynomial q ...
Combinatorial matrix theory is a rich branch of mathematics that combines combinatorics, graph theory, and linear algebra. It includes the theory of matrices with prescribed ...
An alternating sign matrix is a matrix of 0s, 1s, and -1s in which the entries in each row or column sum to 1 and the nonzero entries in each row and column alternate in ...
Let (a)_i be a sequence of complex numbers and let the lower triangular matrices F=(f)_(nk) and G=(g)_(nk) be defined as f_(nk)=(product_(j=k)^(n-1)(a_j+k))/((n-k)!) and ...
Let (a)_i and (b)_i be sequences of complex numbers such that b_j!=b_k for j!=k, and let the lower triangular matrices F=(f)_(nk) and G=(g)_(nk) be defined as ...
...