Search Results for ""
2761 - 2770 of 5881 for math 0Search Results
The E_n(x) function is defined by the integral E_n(x)=int_1^infty(e^(-xt)dt)/(t^n) (1) and is given by the Wolfram Language function ExpIntegralE[n, x]. Defining t=eta^(-1) ...
The case of the Weierstrass elliptic function with invariants g_2=0 and g_3=1. The corresponding real half-period is given by omega_2 = (Gamma^3(1/3))/(4pi) (1) = ...
The second-order ordinary differential equation y^('')+2xy^'-2ny=0, (1) whose solutions may be written either y=Aerfc_n(x)+Berfc_n(-x), (2) where erfc_n(x) is the repeated ...
An endomorphism is called ergodic if it is true that T^(-1)A=A implies m(A)=0 or 1, where T^(-1)A={x in X:T(x) in A}. Examples of ergodic endomorphisms include the map X->2x ...
Given a Poisson distribution with a rate of change lambda, the distribution function D(x) giving the waiting times until the hth Poisson event is D(x) = ...
A function which arises in the fractional integral of e^(at), given by E_t(nu,a) = (e^(at))/(Gamma(nu))int_0^tx^(nu-1)e^(-ax)dx (1) = (a^(-nu)e^(at)gamma(nu,at))/(Gamma(nu)), ...
Euler's 6n+1 theorem states that every prime of the form 6n+1, (i.e., 7, 13, 19, 31, 37, 43, 61, 67, ..., which are also the primes of the form 3n+1; OEIS A002476) can be ...
The number of bases in which 1/p is a repeating decimal (actually, repeating b-ary) of length l is the same as the number of fractions 0/(p-1), 1/(p-1), ..., (p-2)/(p-1) ...
Exponential decay is the decrease in a quantity N according to the law N(t)=N_0e^(-lambdat) (1) for a parameter t and constant lambda (known as the decay constant), where e^x ...
Exponential growth is the increase in a quantity N according to the law N(t)=N_0e^(lambdat) (1) for a parameter t and constant lambda (the analog of the decay constant), ...
...
View search results from all Wolfram sites (491119 matches)

