Search Results for ""
2321 - 2330 of 5881 for math 0Search Results
The Lyapunov condition, sometimes known as Lyapunov's central limit theorem, states that if the (2+epsilon)th moment (with epsilon>0) exists for a statistical distribution of ...
If x takes only nonnegative values, then P(x>=a)<=(<x>)/a. (1) To prove the theorem, write <x> = int_0^inftyxP(x)dx (2) = int_0^axP(x)dx+int_a^inftyxP(x)dx. (3) Since P(x) is ...
(d^2V)/(dv^2)+[a-2qcos(2v)]V=0 (1) (Abramowitz and Stegun 1972; Zwillinger 1997, p. 125), having solution y=C_1C(a,q,v)+C_2S(a,q,v), (2) where C(a,q,v) and S(a,q,v) are ...
A_m(lambda)=int_(-infty)^inftycos[1/2mphi(t)-lambdat]dt, (1) where the function phi(t)=4tan^(-1)(e^t)-pi (2) describes the motion along the pendulum separatrix. Chirikov ...
det(i+j+mu; 2i-j)_(i,j=0)^(n-1)=2^(-n)product_(k=0)^(n-1)Delta_(2k)(2mu), where mu is an indeterminate, Delta_0(mu)=2, ...
Polynomials M_k(x) which form the associated Sheffer sequence for f(t)=(e^t-1)/(e^t+1) (1) and have the generating function sum_(k=0)^infty(M_k(x))/(k!)t^k=((1+t)/(1-t))^x. ...
A number b_(2n) having generating function sum_(n=0)^(infty)b_(2n)x^(2n) = 1/2ln((e^(x/2)-e^(-x/2))/(1/2x)) (1) = 1/2ln2+1/(48)x^2-1/(5760)x^4+1/(362880)x^6-.... (2) For n=1, ...
The second-order ordinary differential equation x^2(d^2y)/(dx^2)+x(dy)/(dx)-(x^2+n^2)y=0. (1) The solutions are the modified Bessel functions of the first and second kinds, ...
A nonzero vector v=(v_0,v_1,...,v_(n-1)) in n-dimensional Lorentzian space R^(1,n-1) is said to be negative timelike if it has imaginary (Lorentzian) norm and if its first ...
Let gamma be a path in C, w=f(z), and theta and phi be the tangents to the curves gamma and f(gamma) at z_0 and w_0. If there is an N such that f^((N))(z_0) != 0 (1) ...
...
View search results from all Wolfram sites (491119 matches)

