TOPICS
Search

Search Results for ""


1651 - 1660 of 5881 for math 0Search Results
A necessary and sufficient condition that there should exist at least one nondecreasing function alpha(t) such that mu_n=int_(-infty)^inftyt^ndalpha(t) for n=0, 1, 2, ..., ...
Let a_n>=0 and suppose sum_(n=1)^inftya_ne^(-an)∼1/a as a->0^+. Then sum_(n<=x)a_n∼x as x->infty. This theorem is a step in the proof of the prime number theorem, but has ...
If 0<p<infty, then the Hardy space H^p(D) is the class of functions holomorphic on the disk D and satisfying the growth condition ...
Let X be a metric space, A be a subset of X, and d a number >=0. The d-dimensional Hausdorff measure of A, H^d(A), is the infimum of positive numbers y such that for every ...
The sequence defined by H(0)=0 and H(n)=n-H(H(H(n-1))). The first few terms are 1, 1, 2, 3, 4, 4, 5, 5, 6, 7, 7, 8, 9, 10, 10, 11, 12, 13, 13, 14, ... (OEIS A005374).
The condition for isoenergetic nondegeneracy for a Hamiltonian H=H_0(I)+epsilonH_1(I,theta) is |(partial^2H_0)/(partialI_ipartialI_j) (partialH_0)/(partialI_i); ...
Let J_nu(z) be a Bessel function of the first kind, N_nu(z) a Bessel function of the second kind, and j_(nu,n)(z) the zeros of z^(-nu)J_nu(z) in order of ascending real part. ...
If there are two functions F_1(t) and F_2(t) with the same integral transform T[F_1(t)]=T[F_2(t)]=f(s), (1) then a null function can be defined by delta_0(t)=F_1(t)-F_2(t) ...
Two curves phi and psi satisfying phi+psi=0 are said to be linearly dependent. Similarly, n curves phi_i, i=1, ..., n are said to be linearly dependent if sum_(i=1)^nphi_i=0.
If a matrix group is reducible, then it is completely reducible, i.e., if the matrix group is equivalent to the matrix group in which every matrix has the reduced form ...
1 ... 163|164|165|166|167|168|169 ... 589 Previous Next

...