TOPICS
Search

Search Results for ""


191 - 200 of 1753 for fundamental physical constantSearch Results
The sum of reciprocal multifactorials can be given in closed form by the beautiful formula m(n) = sum_(n=0)^(infty)1/(n!...!_()_(k)) (1) = ...
Let a piecewise smooth function f with only finitely many discontinuities (which are all jumps) be defined on [-pi,pi] with Fourier series a_k = 1/piint_(-pi)^pif(t)cos(kt)dt ...
Closed forms are known for the sums of reciprocals of even-indexed Lucas numbers P_L^((e)) = sum_(n=1)^(infty)1/(L_(2n)) (1) = sum_(n=1)^(infty)1/(phi^(2n)+phi^(-2n)) (2) = ...
Prellberg (2001) noted that the limit c=lim_(n->infty)(T_n)/(B_nexp{1/2[W(n)]^2})=2.2394331040... (OEIS A143307) exists, where T_n is a Takeuchi number, B_n is a Bell number, ...
Let S(x) denote the number of positive integers not exceeding x which can be expressed as a sum of two squares (i.e., those n<=x such that the sum of squares function ...
Consider decomposition the factorial n! into multiplicative factors p_k^(b_k) arranged in nondecreasing order. For example, 4! = 3·2^3 (1) = 2·3·4 (2) = 2·2·2·3 (3) and 5! = ...
Closed forms are known for the sums of reciprocals of even-indexed Fibonacci numbers P_F^((e)) = sum_(n=1)^(infty)1/(F_(2n)) (1) = ...
Let b(k) be the number of 1s in the binary expression of k, i.e., the binary digit count of 1, giving 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, ... (OEIS A000120) for k=1, 2, .... ...
An elliptic function with no poles in a fundamental cell is a constant.
Let Xi be the xi-function defined by Xi(iz)=1/2(z^2-1/4)pi^(-z/2-1/4)Gamma(1/2z+1/4)zeta(z+1/2). (1) Xi(z/2)/8 can be viewed as the Fourier transform of the signal ...
1 ... 17|18|19|20|21|22|23 ... 176 Previous Next

...