Search Results for ""
1231 - 1240 of 2552 for fourth isomorphism theoremSearch Results
Let L=(L, ^ , v ) and K=(K, ^ , v ) be lattices, and let h:L->K. If h is one-to-one and is a join-homomorphism, then it is a join-embedding.
Let L=(L, ^ , v ) and K=(K, ^ , v ) be lattices, and let h:L->K. If K=L and h is a join-homomorphism, then we call h a join-endomorphism.
Let L=(L, ^ , v ) and K=(K, ^ , v ) be lattices, and let h:L->K. Then the mapping h is a join-homomorphism provided that for any x,y in L, h(x v y)=h(x) v h(y). It is also ...
A lattice automorphism is a lattice endomorphism that is also a lattice isomorphism.
Let A be a non-unital C^*-algebra. There is a unique (up to isomorphism) unital C^*-algebra which contains A as an essential ideal and is maximal in the sense that any other ...
A problem which is both NP (verifiable in nondeterministic polynomial time) and NP-hard (any NP-problem can be translated into this problem). Examples of NP-hard problems ...
Suppose that V={(x_1,x_2,x_3)} and W={(x_1,0,0)}. Then the quotient space V/W (read as "V mod W") is isomorphic to {(x_2,x_3)}=R^2. In general, when W is a subspace of a ...
Let X be a normed space and X^(**)=(X^*)^* denote the second dual vector space of X. The canonical map x|->x^^ defined by x^^(f)=f(x),f in X^* gives an isometric linear ...
The semigroup algebra K[S], where K is a field and S a semigroup, is formally defined in the same way as the group algebra K[G]. Similarly, a semigroup ring R[S] is a ...
The Steenrod algebra has to do with the cohomology operations in singular cohomology with integer mod 2 coefficients. For every n in Z and i in {0,1,2,3,...} there are ...
...
View search results from all Wolfram sites (7573 matches)

