Search Results for ""
8341 - 8350 of 13135 for floating point numberSearch Results
An orthogonal array OA(k,s) is a k×s^2 array with entries taken from an s-set S having the property that in any two rows, each ordered pair of symbols from S occurs exactly ...
An orthogonal basis of vectors is a set of vectors {x_j} that satisfy x_jx_k=C_(jk)delta_(jk) and x^mux_nu=C_nu^mudelta_nu^mu, where C_(jk), C_nu^mu are constants (not ...
Two functions f(x) and g(x) are orthogonal over the interval a<=x<=b with weighting function w(x) if <f(x)|g(x)>=int_a^bf(x)g(x)w(x)dx=0. (1) If, in addition, ...
Two representations of a group chi_i and chi_j are said to be orthogonal if sum_(R)chi_i(R)chi_j(R)=0 for i!=j, where the sum is over all elements R of the representation.
Orthogonal involution, also called absolute involution, is the involution on the line at infinity that maps orthogonal directions to each other.
In a space E equipped with a symmetric, differential k-form, or Hermitian form, the orthogonal sum is the direct sum of two subspaces V and W, which are mutually orthogonal. ...
Families of surfaces which are mutually orthogonal. Up to three families of surfaces may be orthogonal in three dimensions. The simplest example of three orthogonal surfaces ...
Two vectors u and v whose dot product is u·v=0 (i.e., the vectors are perpendicular) are said to be orthogonal. In three-space, three vectors can be mutually perpendicular.
Let G be a group and theta n permutation of G. Then theta is an orthomorphism of G if the self-mapping nu of G defined by nu(x)=x^(-1)theta(x) is also an permutation of G.
A pair of functions phi_i(x) and phi_j(x) are orthonormal if they are orthogonal and each normalized so that int_a^b[phi_i(x)]^2w(x)dx = 1 (1) int_a^b[phi_j(x)]^2w(x)dx = 1. ...
...
View search results from all Wolfram sites (67460 matches)

