Search Results for ""
7541 - 7550 of 13135 for floating point numberSearch Results
The Harada-Norton group is the sporadic group HN of order |HN| = 273030912000000 (1) = 2^(14)·3^6·5^6·7·11·19. (2) It is implemented in the Wolfram Language as ...
Let alpha_(n+1) = (2alpha_nbeta_n)/(alpha_n+beta_n) (1) beta_(n+1) = sqrt(alpha_nbeta_n), (2) then H(alpha_0,beta_0)=lim_(n->infty)a_n=1/(M(alpha_0^(-1),beta_0^(-1))), (3) ...
Harmonic coordinates satisfy the condition Gamma^lambda=g^(munu)Gamma_(munu)^lambda=0, (1) or equivalently, partial/(partialx^kappa)(sqrt(g)g^(lambdakappa))=0. (2) It is ...
A perspective collineation with center O and axis o not incident is called a geometric homology. A geometric homology is said to be harmonic if the points A and A^' on a line ...
The statistical index P_H=(sumv_0)/(sum(v_0p_0)/(p_n))=(sump_0q_0)/(sum(p_0^2q_0)/(p_n)), where p_n is the price per unit in period n, q_n is the quantity produced in period ...
Let D=D(z_0,R) be an open disk, and let u be a harmonic function on D such that u(z)>=0 for all z in D. Then for all z in D, we have 0<=u(z)<=(R/(R-|z-z_0|))^2u(z_0).
Let u_1<=u_2<=... be harmonic functions on a connected open set U subset= C. Then either u_j->infty uniformly on compact sets or there is a finite-values harmonic function u ...
The partial differential equation u_t=u_(xxx)u^3.
Given three circles, each intersecting the other two in two points, the line segments connecting their points of intersection satisfy (ace)/(bdf)=1 (Honsberger 1995).
For n>=3, there exist no additive finite and invariant measures for the group of displacements in R^n.
...
View search results from all Wolfram sites (67460 matches)

