Search Results for ""
7431 - 7440 of 13131 for eulerstotienttheorem.htmlSearch Results

det(i+j+mu; 2i-j)_(i,j=0)^(n-1)=2^(-n)product_(k=0)^(n-1)Delta_(2k)(2mu), where mu is an indeterminate, Delta_0(mu)=2, ...
Mills' theorem states that there exists a real constant A such that |_A^(3^n)_| is prime for all positive integers n (Mills 1947). While for each value of c>=2.106, there are ...
Mills' constant can be defined as the least theta such that f_n=|_theta^(3^n)_| is prime for all positive integers n (Caldwell and Cheng 2005). The first few f_n for n=1, 2, ...
The Mills ratio is defined as m(x) = 1/(h(x)) (1) = (S(x))/(P(x)) (2) = (1-D(x))/(P(x)), (3) where h(x) is the hazard function, S(x) is the survival function, P(x) is the ...
Mills (1947) proved the existence of a real constant A such that |_A^(3^n)_| (1) is prime for all integers n>=1, where |_x_| is the floor function. Mills (1947) did not, ...
Let X be a locally convex topological vector space and let K be a compact subset of X. In functional analysis, Milman's theorem is a result which says that if the closed ...
A predictor-corrector method for solution of ordinary differential equations. The third-order equations for predictor and corrector are y_(n+1) = ...
The unknotting number for a torus knot (p,q) is (p-1)(q-1)/2. This 40-year-old conjecture was proved (Adams 1994) by Kronheimer and Mrowka (1993, 1995).
If a compact manifold M has nonnegative Ricci curvature tensor, then its fundamental group has at most polynomial growth. On the other hand, if M has negative curvature, then ...
Let G=(V,E) be a (not necessarily simple) undirected edge-weighted graph with nonnegative weights. A cut C of G is any nontrivial subset of V, and the weight of the cut is ...

...