Search Results for ""
7191 - 7200 of 13131 for eulerstotienttheorem.htmlSearch Results

A matrix is a concise and useful way of uniquely representing and working with linear transformations. In particular, every linear transformation can be represented by a ...
An n×m matrix A^- is a 1-inverse of an m×n matrix A for which AA^-A=A. (1) The Moore-Penrose matrix inverse is a particular type of 1-inverse. A matrix equation Ax=b (2) has ...
Denote the sum of two matrices A and B (of the same dimensions) by C=A+B. The sum is defined by adding entries with the same indices c_(ij)=a_(ij)+b_(ij) over all i and j. ...
Matrix decomposition refers to the transformation of a given matrix (often assumed to be a square matrix) into a given canonical form.
Matrix diagonalization is the process of taking a square matrix and converting it into a special type of matrix--a so-called diagonal matrix--that shares the same fundamental ...
The matrix direct sum of n matrices constructs a block diagonal matrix from a set of square matrices, i.e., direct sum _(i=1)^nA_i = diag(A_1,A_2,...,A_n) (1) = [A_1 ; A_2 ; ...
Two matrices A and B are said to be equal iff a_(ij)=b_(ij) (1) for all i,j. Therefore, [1 2; 3 4]=[1 2; 3 4], (2) while [1 2; 3 4]!=[0 2; 3 4]. (3)
Nonhomogeneous matrix equations of the form Ax=b (1) can be solved by taking the matrix inverse to obtain x=A^(-1)b. (2) This equation will have a nontrivial solution iff the ...
The power series that defines the exponential map e^x also defines a map between matrices. In particular, exp(A) = e^(A) (1) = sum_(n=0)^(infty)(A^n)/(n!) (2) = ...
A pair of matrices ND^(-1) or D^(-1)N, where N is the matrix numerator and D is the denominator.

...