Search Results for ""
2641 - 2650 of 13131 for eulerstotienttheorem.htmlSearch Results
Let P=alpha:beta:gamma be a point not on a sideline of a reference triangle DeltaABC. Let A^' be the point of intersection AP intersection BC, B^'=BP intersection AC, and ...
The cyclocevian triangle DeltaA^('')B^('')C^('') of a reference triangle DeltaABC with respect to a point P is the triangle formed by the vertices determined by the ...
The n-cyclohedron, also known as the Bott-Taubes polytope, is defined as the compactification of the configuration space of n points on the circle. The cyclohedron can be ...
The cycloid is the locus of a point on the rim of a circle of radius a rolling along a straight line. It was studied and named by Galileo in 1599. Galileo attempted to find ...
The catacaustic of one arch of a cycloid given parametrically as x = t-sint (1) y = 1-cost (2) is a complicated expression for an arbitrary radiant point. For the case of the ...
The evolute of the cycloid x(t) = a(t-sint) (1) y(t) = a(1-cost) (2) is given by x(t) = a(t+sint) (3) y(t) = a(cost-1). (4) As can be seen in the above figure, the evolute is ...
The involute of the cycloid x = a(t-sint) (1) y = a(1-cost) (2) is given by x_i = a(t+sint) (3) y_i = a(3+cost). (4) As can be seen in the above figure, the involute is ...
The radial curve of the cycloid with parametric equations x = a(t-sint) (1) y = a(1-cost) (2) is the circle x_r = x_0+2asint (3) y_r = -2a+y_0+2acost. (4)
The polar curve r=1+2cos(2theta) (1) that can be used for angle trisection. It was devised by Ceva in 1699, who termed it the cycloidum anomalarum (Loomis 1968, p. 29). It ...
The equation x^p=1, where solutions zeta_k=e^(2piik/p) are the roots of unity sometimes called de Moivre numbers. Gauss showed that the cyclotomic equation can be reduced to ...
...
View search results from all Wolfram sites (229495 matches)

