TOPICS
Search

Search Results for ""


1 - 10 of 791 for euler mascheroniSearch Results
The Euler-Mascheroni constant gamma, sometimes also called 'Euler's constant' or 'the Euler constant' (but not to be confused with the constant e=2.718281...) is defined as ...
Define I_n=(-1)^nint_0^infty(lnz)^ne^(-z)dz, (1) then I_n=(-1)^nGamma^((n))(1), (2) where Gamma^((n))(z) is the nth derivative of the gamma function. Particular values ...
The Euler-Mascheroni constant gamma=0.577215664901532860606512090082402431042... (OEIS A001620) was calculated to 16 digits by Euler in 1781 and to 32 decimal places by ...
A beautiful approximation to the Euler-Mascheroni constant gamma is given by pi/(2e)=0.57786367... (1) (OEIS A086056; E. W. Weisstein, Apr. 18, 2006), which is good to three ...
The simple continued fraction of the Euler-Mascheroni constant gamma is [0; 1, 1, 2, 1, 2, 1, 4, 3, 13, 5, 1, 1, 8, 1, 2, 4, 1, 1, 40, ...] (OEIS A002852). The first few ...
A geometric construction done with a movable compass alone. All constructions possible with a compass and straightedge are possible with a movable compass alone, as was ...
In response to a letter from Goldbach, Euler considered sums of the form s_h(m,n) = sum_(k=1)^(infty)(1+1/2+...+1/k)^m(k+1)^(-n) (1) = ...
Euler integration was defined by Schanuel and subsequently explored by Rota, Chen, and Klain. The Euler integral of a function f:R->R (assumed to be piecewise-constant with ...
Due to Euler's prolific output, there are a great number of theorems that are know by the name "Euler's theorem." A sampling of these are Euler's displacement theorem for ...
For s>1, the Riemann zeta function is given by zeta(s) = sum_(n=1)^(infty)1/(n^s) (1) = product_(k=1)^(infty)1/(1-1/(p_k^s)), (2) where p_k is the kth prime. This is Euler's ...
1|2|3|4 ... 80 Next

...