Search Results for ""
101 - 110 of 287 for divisorSearch Results
Highly composite numbers are numbers such that divisor function d(n)=sigma_0(n) (i.e., the number of divisors of n) is greater than for any smaller n. Superabundant numbers ...
As originally stated by Gould (1972), GCD{(n-1; k),(n; k-1),(n+1; k+1)} =GCD{(n-1; k-1),(n; k+1),(n+1; k)}, (1) where GCD is the greatest common divisor and (n; k) is a ...
Let A be a matrix with the elementary divisors of its characteristic matrix expressed as powers of its irreducible polynomials in the field F[lambda], and consider an ...
A function tau(n) related to the divisor function sigma_k(n), also sometimes called Ramanujan's tau function. It is defined via the Fourier series of the modular discriminant ...
A number n is k-multiperfect (also called a k-multiply perfect number or k-pluperfect number) if sigma(n)=kn for some integer k>2, where sigma(n) is the divisor function. The ...
A problem posed by the Slovak mathematician Stefan Znám in 1972 asking whether, for all integers k>=2, there exist k integers x_1,...,x_k all greater than 1 such that x_i is ...
Take K a number field and L an Abelian extension, then form a prime divisor m that is divided by all ramified primes of the extension L/K. Now define a map phi_(L/K) from the ...
The decimal period of a repeating decimal is the number of digits that repeat. For example, 1/3=0.3^_ has decimal period one, 1/11=0.09^_ has decimal period two, and ...
Numbers which are not perfect and for which s(N)=sigma(N)-N<N, or equivalently sigma(n)<2n, where sigma(N) is the divisor function. Deficient numbers are sometimes called ...
A Hajós group is a group for which all factorizations of the form (say) Z_n=A direct sum B have A or B periodic, where the period is a divisor of n. Hajós groups arose after ...
...
View search results from all Wolfram sites (1205 matches)

