Search Results for ""
1791 - 1800 of 3354 for dirichlet functionSearch Results
The nth central binomial coefficient is defined as (2n; n) = ((2n)!)/((n!)^2) (1) = (2^n(2n-1)!!)/(n!), (2) where (n; k) is a binomial coefficient, n! is a factorial, and n!! ...
Zero is the integer denoted 0 that, when used as a counting number, means that no objects are present. It is the only integer (and, in fact, the only real number) that is ...
The important binomial theorem states that sum_(k=0)^n(n; k)r^k=(1+r)^n. (1) Consider sums of powers of binomial coefficients a_n^((r)) = sum_(k=0)^(n)(n; k)^r (2) = ...
Ball triangle picking is the selection of triples of points (corresponding to vertices of a general triangle) randomly placed inside a ball. n random triangles can be picked ...
The Euler-Maclaurin integration and sums formulas can be derived from Darboux's formula by substituting the Bernoulli polynomial B_n(t) in for the function phi(t). ...
Wirsing (1974) showed, among other results, that if F_n(x) is the Gauss-Kuzmin distribution, then lim_(n->infty)(F_n(x)-lg(1+x))/((-lambda)^n)=Psi(x), (1) where ...
A genetic algorithm is a class of adaptive stochastic optimization algorithms involving search and optimization. Genetic algorithms were first used by Holland (1975). The ...
The Hilbert curve is a Lindenmayer system invented by Hilbert (1891) whose limit is a plane-filling function which fills a square. Traversing the polyhedron vertices of an ...
Consider the Euler product zeta(s)=product_(k=1)^infty1/(1-1/(p_k^s)), (1) where zeta(s) is the Riemann zeta function and p_k is the kth prime. zeta(1)=infty, but taking the ...
A sequence s_n(x) is called a Sheffer sequence iff its generating function has the form sum_(k=0)^infty(s_k(x))/(k!)t^k=A(t)e^(xB(t)), (1) where A(t) = A_0+A_1t+A_2t^2+... ...
...