Search Results for ""
61 - 70 of 174 for diophantineSearch Results
Lucas's theorem states that if n>=3 be a squarefree integer and Phi_n(z) a cyclotomic polynomial, then Phi_n(z)=U_n^2(z)-(-1)^((n-1)/2)nzV_n^2(z), (1) where U_n(z) and V_n(z) ...
Consider solutions to the equation x^y=y^x. (1) Real solutions are given by x=y for x,y>0, together with the solution of (lny)/y=(lnx)/x, (2) which is given by ...
It is possible to find six points in the plane, no three on a line and no four on a circle (i.e., none of which are collinear or concyclic), such that all the mutual ...
Find nontrivial solutions to sigma(x^2)=sigma(y^2) other than (x,y)=(4,5), where sigma(n) is the divisor function. Nontrivial solutions means that solutions which are ...
The conjecture made by Belgian mathematician Eugène Charles Catalan in 1844 that 8 and 9 (2^3 and 3^2) are the only consecutive powers (excluding 0 and 1). In other words, ...
A (k,l)-multigrade equation is a Diophantine equation of the form sum_(i=1)^ln_i^j=sum_(i=1)^lm_i^j (1) for j=1, ..., k, where m and n are l-vectors. Multigrade identities ...
Brocard's problem asks to find the values of n for which n!+1 is a square number m^2, where n! is the factorial (Brocard 1876, 1885). The only known solutions are n=4, 5, and ...
An Euler brick is a cuboid that possesses integer edges a>b>c and face diagonals d_(ab) = sqrt(a^2+b^2) (1) d_(ac) = sqrt(a^2+c^2) (2) d_(bc) = sqrt(b^2+c^2). (3) If the ...
The smallest nontrivial taxicab number, i.e., the smallest number representable in two ways as a sum of two cubes. It is given by 1729=1^3+12^3=9^3+10^3. The number derives ...
A special case of the quadratic Diophantine equation having the form x^2-Dy^2=1, (1) where D>0 is a nonsquare natural number (Dickson 2005). The equation x^2-Dy^2=+/-4 (2) ...
...