TOPICS
Search

Search Results for ""


31 - 40 of 174 for diophantineSearch Results
Euler (1772ab) conjectured that there are no positive integer solutions to the quartic Diophantine equation A^4=B^4+C^4+D^4. This conjecture was disproved by Elkies (1988), ...
Let there be n>=2 integers 0<a_1<...<a_n with GCD(a_1,a_2,...,a_n)=1. The values a_i represent the denominations of n different coins, where these denominations have greatest ...
A Diophantine problem (i.e., one whose solution must be given in terms of integers) which seeks a solution to the following problem. Given n men and a pile of coconuts, each ...
A number which can be represented both in the form x_0^2-Dy_0^2 and in the form Dx_1^2-y_1^2. This is only possible when the Pell equation x^2-Dy^2=-1 (1) is solvable. Then ...
A number h which satisfies the conditions of the congruum problem: x^2+h=a^2 and x^2-h=b^2, where x,h,a,b are integers. The list of congrua is given by 24, 96, 120, 240, 336, ...
The Diophantine equation x^2+y^2=p can be solved for p a prime iff p=1 (mod 4) or p=2. The representation is unique except for changes of sign or rearrangements of x and y. ...
An integer which is expressible in only one way in the form x^2+Dy^2 or x^2-Dy^2 where x^2 is relatively prime to Dy^2. If the integer is expressible in more than one way, it ...
For every k>1, there exist only finite many pairs of powers (p,p^') with p and p^' natural numbers and k=p^'-p.
An integer which is expressible in more than one way in the form x^2+Dy^2 or x^2-Dy^2 where x^2 is relatively prime to Dy^2. If the integer is expressible in only one way, it ...
Given a Pythagorean triple (a,b,c), the fractions a/b and b/a are called Pythagorean fractions. Diophantus showed that the Pythagorean fractions consist precisely of ...
1|2|3|4|5|6|7 ... 18 Previous Next

...