Search Results for ""
101 - 110 of 426 for damped harmonic motionSearch Results

The one-dimensional wave equation is given by (partial^2psi)/(partialx^2)=1/(v^2)(partial^2psi)/(partialt^2). (1) In order to specify a wave, the equation is subject to ...
Consider a second-order differential operator L^~u(x)=p_0(d^2u)/(dx^2)+p_1(du)/(dx)+p_2u, (1) where u=u(x) and p_i=p_i(x) are real functions of x on the region of interest ...
The Fourier transform of e^(-k_0|x|) is given by F_x[e^(-k_0|x|)](k)=int_(-infty)^inftye^(-k_0|x|)e^(-2piikx)dx = ...
Lissajous curves are the family of curves described by the parametric equations x(t) = Acos(omega_xt-delta_x) (1) y(t) = Bcos(omega_yt-delta_y), (2) sometimes also written in ...
Let D be a domain in R^n for n>=3. Then the transformation v(x_1^',...,x_n^')=(a/(r^'))^(n-2)u((a^2x_1^')/(r^('2)),...,(a^2x_n^')/(r^('2))) onto a domain D^', where ...
A Fourier series is an expansion of a periodic function f(x) in terms of an infinite sum of sines and cosines. Fourier series make use of the orthogonality relationships of ...
Let D=D(z_0,R) be an open disk, and let u be a harmonic function on D such that u(z)>=0 for all z in D. Then for all z in D, we have 0<=u(z)<=(R/(R-|z-z_0|))^2u(z_0).
Let u_1<=u_2<=... be harmonic functions on a connected open set U subset= C. Then either u_j->infty uniformly on compact sets or there is a finite-values harmonic function u ...
Exponential decay is the decrease in a quantity N according to the law N(t)=N_0e^(-lambdat) (1) for a parameter t and constant lambda (known as the decay constant), where e^x ...
Let a function h:U->R be continuous on an open set U subset= C. Then h is said to have the epsilon_(z_0)-property if, for each z_0 in U, there exists an epsilon_(z_0)>0 such ...

...