Search Results for ""
1 - 10 of 30 for cycloidSearch Results
The cycloid is the locus of a point on the rim of a circle of radius a rolling along a straight line. It was studied and named by Galileo in 1599. Galileo attempted to find ...
The involute of the cycloid x = a(t-sint) (1) y = a(1-cost) (2) is given by x_i = a(t+sint) (3) y_i = a(3+cost). (4) As can be seen in the above figure, the involute is ...
The evolute of the cycloid x(t) = a(t-sint) (1) y(t) = a(1-cost) (2) is given by x(t) = a(t+sint) (3) y(t) = a(cost-1). (4) As can be seen in the above figure, the evolute is ...
The catacaustic of one arch of a cycloid given parametrically as x = t-sint (1) y = 1-cost (2) is a complicated expression for an arbitrary radiant point. For the case of the ...
The path traced out by a fixed point at a radius b>a, where a is the radius of a rolling circle, also sometimes called an extended cycloid. The prolate cycloid contains ...
A curtate cycloid, sometimes also called a contracted cycloid, is the path traced out by a fixed point at a radius b<a, where a is the radius of a rolling circle. Curtate ...
The evolute of the prolate cycloid x = at-bsint (1) y = a-bcost (2) (with b>a) is given by x = a[t+((bcost-a)sint)/(acost-b)] (3) y = (a(a-bcost)^2)/(b(acost-b)). (4)
The evolute of the curtate cycloid x = at-bsint (1) y = a-bcost (2) (with b<a) is given by x = (a[-2bt+2atcost-2asint+bsin(2t)])/(2(acost-b)) (3) y = ...
The radial curve of the cycloid with parametric equations x = a(t-sint) (1) y = a(1-cost) (2) is the circle x_r = x_0+2asint (3) y_r = -2a+y_0+2acost. (4)
The polar curve r=1+2cos(2theta) (1) that can be used for angle trisection. It was devised by Ceva in 1699, who termed it the cycloidum anomalarum (Loomis 1968, p. 29). It ...
...
View search results from all Wolfram sites (129 matches)