Search Results for ""
5631 - 5640 of 13134 for complexity theorySearch Results
As shown by Morse and Feshbach (1953), the Helmholtz differential equation is separable in confocal paraboloidal coordinates.
In conical coordinates, Laplace's equation can be written ...
In elliptic cylindrical coordinates, the scale factors are h_u=h_v=sqrt(sinh^2u+sin^2v), h_z=1, and the separation functions are f_1(u)=f_2(v)=f_3(z)=1, giving a Stäckel ...
As shown by Morse and Feshbach (1953) and Arfken (1970), the Helmholtz differential equation is separable in oblate spheroidal coordinates.
The scale factors are h_u=h_v=sqrt(u^2+v^2), h_theta=uv and the separation functions are f_1(u)=u, f_2(v)=v, f_3(theta)=1, given a Stäckel determinant of S=u^2+v^2. The ...
In parabolic cylindrical coordinates, the scale factors are h_u=h_v=sqrt(u^2+v^2), h_z=1 and the separation functions are f_1(u)=f_2(v)=f_3(z)=1, giving Stäckel determinant ...
As shown by Morse and Feshbach (1953) and Arfken (1970), the Helmholtz differential equation is separable in prolate spheroidal coordinates.
The Helmholtz differential equation in spherical coordinates is separable. In fact, it is separable under the more general condition that k^2 is of the form ...
Let H be a Hilbert space and (e_i)_(i in I) is an orthonormal basis for H. The set S(H) of all operators T for which sum_(i in I)||Te_i||^2<infty is a self-adjoint ideal of ...
A hole in a mathematical object is a topological structure which prevents the object from being continuously shrunk to a point. When dealing with topological spaces, a ...
...
View search results from all Wolfram sites (28442 matches)

