Search Results for ""
2641 - 2650 of 13134 for complexity theorySearch Results
The set of elements g of a group such that g^(-1)Hg=H, is said to be the normalizer N_G(H) with respect to a subset of group elements H. If H is a subgroup of G, N_G(H) is ...
A constant appearing in formulas for the efficiency of the Euclidean algorithm, B = (12ln2)/(pi^2)[-1/2+6/(pi^2)zeta^'(2)]+C-1/2 (1) = 0.06535142... (2) (OEIS A143304), where ...
Let K be a number field of extension degree d over Q. Then an order O of K is a subring of the ring of integers of K with d generators over Z, including 1. The ring of ...
The length of a number n in base b is the number of digits in the base-b numeral for n, given by the formula L(n,b)=|_log_b(n)_|+1, where |_x_| is the floor function. The ...
It is possible to construct simple functions which produce growing patterns. For example, the Baxter-Hickerson function f(n)=1/3(2·10^(5n)-10^(4n)+2·10^(3n)+10^(2n)+10^n+1) ...
A set of numbers obeying a pattern like the following: 91·37 = 3367 (1) 9901·3367 = 33336667 (2) 999001·333667 = 333333666667 (3) 99990001·33336667 = 3333333366666667 (4) 4^2 ...
The algebraic integers in a number field.
A number theoretic function is a function whose domain is the set of positive integers.
The O'Nan group is the sporadic group O'N of order |O'N| = 460815505920 (1) = 2^9·3^4·5·7^3·11·19·31. (2) It is implemented in the Wolfram Language as ONanGroupON[].
A polygonal number of the form O_n=n(3n-2). The first few are 1, 8, 21, 40, 65, 96, 133, 176, ... (OEIS A000567). The generating function for the octagonal numbers is ...
...
View search results from all Wolfram sites (28442 matches)

