Search Results for ""
1251 - 1260 of 3946 for complex functionSearch Results
Given a Jacobi theta function, the nome is defined as q(k) = e^(piitau) (1) = e^(-piK^'(k)/K(k)) (2) = e^(-piK(sqrt(1-k^2))/K(k)) (3) (Borwein and Borwein 1987, pp. 41, 109 ...
In the theory of special functions, a class of functions is said to be "of the third kind" if it is similar to but distinct from previously defined functions already defined ...
The nth central binomial coefficient is defined as (2n; n) = ((2n)!)/((n!)^2) (1) = (2^n(2n-1)!!)/(n!), (2) where (n; k) is a binomial coefficient, n! is a factorial, and n!! ...
Zero is the integer denoted 0 that, when used as a counting number, means that no objects are present. It is the only integer (and, in fact, the only real number) that is ...
A modification of Legendre's formula for the prime counting function pi(x). It starts with |_x_| = (1) where |_x_| is the floor function, P_2(x,a) is the number of integers ...
Montgomery's pair correlation conjecture, published in 1973, asserts that the two-point correlation function R_2(r) for the zeros of the Riemann zeta function zeta(z) on the ...
A pair of numbers m and n such that sigma(m)=sigma(n)=m+n-1, where sigma(m) is the divisor function. Beck and Najar (1977) found 11 augmented amicable pairs.
The Chebyshev integral is given by intx^p(1-x)^qdx=B(x;1+p,1+q), where B(x;a,b) is an incomplete beta function.
f(x)=1/x-|_1/x_| for x in [0,1], where |_x_| is the floor function. The natural invariant of the map is rho(y)=1/((1+y)ln2).
sum_(k=-n)^n(-1)^k(n+b; n+k)(n+c; c+k)(b+c; b+k)=(Gamma(b+c+n+1))/(n!Gamma(b+1)Gamma(c+1)), where (n; k) is a binomial coefficient and Gamma(x) is a gamma function.
...