Search Results for ""
371 - 380 of 729 for completeSearch Results
![](/common/images/search/spacer.gif)
Let L=(L, ^ , v ) and K=(K, ^ , v ) be lattices, and let h:L->K. If K=L and h is a join-homomorphism, then we call h a join-endomorphism.
Let L=(L, ^ , v ) and K=(K, ^ , v ) be lattices, and let h:L->K. Then the mapping h is a join-homomorphism provided that for any x,y in L, h(x v y)=h(x) v h(y). It is also ...
Let L=(L, ^ , v ) and K=(K, ^ , v ) be lattices, and let h:L->K. If h is one-to-one and onto, then it is a join-isomorphism if it preserves joins.
Let R^3 be the space in which a knot K sits. Then the space "around" the knot, i.e., everything but the knot itself, is denoted R^3-K and is called the knot complement of K ...
Given a knot diagram, it is possible to construct a collection of variables and equations, and given such a collection, a group naturally arises that is known as the group of ...
The l^2-norm (also written "l^2-norm") |x| is a vector norm defined for a complex vector x=[x_1; x_2; |; x_n] (1) by |x|=sqrt(sum_(k=1)^n|x_k|^2), (2) where |x_k| on the ...
The Laplacian spectral ratio R_L(G) of a connected graph G is defined as the ratio of its Laplacian spectral radius to its algebraic connectivity. If a connected graph of ...
A lattice automorphism is a lattice endomorphism that is also a lattice isomorphism.
Let L=(L, ^ , v ) and K=(K, ^ , v ) be lattices, and let h:L->K. A lattice endomorphism is a mapping h:L->L that preserves both meets and joins.
Let L=(L, ^ , v ) and K=(K, ^ , v ) be lattices, and let h:L->K. A lattice isomorphism is a one-to-one and onto lattice homomorphism.
![](/common/images/search/spacer.gif)
...