Search Results for ""
2261 - 2270 of 3197 for chess mathSearch Results

Willans' formula is a prime-generating formula due to Willan (1964) that is defined as follows. Let F(j) = |_cos^2[pi((j-1)!+1)/j]_| (1) = {1 for j=1 or j prime; 0 otherwise ...
A variant of the Pollard p-1 method which uses Lucas sequences to achieve rapid factorization if some factor p of N has a decomposition of p+1 in small prime factors.
The orthogonal polynomials defined variously by (1) (Koekoek and Swarttouw 1998, p. 24) or p_n(x;a,b,c,d) = W_n(-x^2;a,b,c,d) (2) = (3) (Koepf, p. 116, 1998). The first few ...
The quotient W(p)=((p-1)!+1)/p which must be congruent to 0 (mod p) for p to be a Wilson prime. The quotient is an integer only when p=1 (in which case W(1)=2) or p is a ...
A prize of 100000 German marks offered for the first valid proof of Fermat's last theorem (Ball and Coxeter 1987, p. 72; Barner 1997; Hoffman 1998, pp. 193-194 and 199). The ...
Let the values of a function f(x) be tabulated at points x_i equally spaced by h=x_(i+1)-x_i, so f_1=f(x_1), f_2=f(x_2), ..., f_n=f(x_n). Then Woolhouse's formulas ...
x^n=sum_(k=0)^n<n; k>(x+k; n), where <n; k> is an Eulerian number and (n; k) is a binomial coefficient (Worpitzky 1883; Comtet 1974, p. 242).
Let points A^', B^', and C^' be marked off some fixed distance x along each of the sides BC, CA, and AB. Then the lines AA^', BB^', and CC^' concur in a point U known as the ...
The Zeckendorf representation of a positive integer n is a representation of n as a sum of nonconsecutive distinct Fibonacci numbers, n=sum_(k=2)^Lepsilon_kF_k, where ...
A zero matrix is an m×n matrix consisting of all 0s (MacDuffee 1943, p. 27), denoted 0. Zero matrices are sometimes also known as null matrices (Akivis and Goldberg 1972, p. ...

...