Search Results for ""
971 - 980 of 13135 for calculusSearch Results
Given a Lyapunov characteristic exponent sigma_i, the corresponding Lyapunov characteristic number lambda_i is defined as lambda_i=e^(sigma_i). (1) For an n-dimensional ...
For a two-dimensional map with sigma_2>sigma_1, d_(Lya)=1-(sigma_1)/(sigma_2), where sigma_n are the Lyapunov characteristic exponents.
The second-order ordinary differential equation y^('')-[(m(m+1)+1/4-(m+1/2)cosx)/(sin^2x)+(lambda+1/2)]y=0.
The ordinary differential equation y^('')+r/zy^'=(Az^m+s/(z^2))y. (1) It has solution y=c_1I_(-nu)((2sqrt(A)z^(m/2+1))/(m+2))z^((1-r)/2) ...
The integral representation of ln[Gamma(z)] by lnGamma(z) = int_1^zpsi_0(z^')dz^' (1) = int_0^infty[(z-1)-(1-e^(-(z-1)t))/(1-e^(-t))](e^(-t))/tdt, (2) where lnGamma(z) is the ...
Mann's iteration is the dynamical system defined for a continuous function f:[0,1]->[0,1], x_n=1/nsum_(k=0)^(n-1)f(x_k) with x_0 in [0,1]. It can also be written ...
An n-cycle is a finite sequence of points Y_0, ..., Y_(n-1) such that, under a map G, Y_1 = G(Y_0) (1) Y_2 = G(Y_1) (2) Y_(n-1) = G(Y_(n-2)) (3) Y_0 = G(Y_(n-1)). (4) In ...
A stable fixed point of a map which, in a dissipative dynamical system, is an attractor.
Let a patch be given by the map x:U->R^n, where U is an open subset of R^2, or more generally by x:A->R^n, where A is any subset of R^2. Then x(U) (or more generally, x(A)) ...
If x takes only nonnegative values, then P(x>=a)<=(<x>)/a. (1) To prove the theorem, write <x> = int_0^inftyxP(x)dx (2) = int_0^axP(x)dx+int_a^inftyxP(x)dx. (3) Since P(x) is ...
...
View search results from all Wolfram sites (19164 matches)

