Search Results for ""
931 - 940 of 13135 for calculusSearch Results
The ordinary differential equation y^('')+(1-|y|)y^'+y=0.
D^*Dpsi=del ^*del psi+1/4Rpsi, where D is the Dirac operator D:Gamma(S^+)->Gamma(S^-), del is the covariant derivative on spinors, and R is the scalar curvature.
Second and higher derivatives of the metric tensor g_(ab) need not be continuous across a surface of discontinuity, but g_(ab) and g_(ab,c) must be continuous across it.
D^*Dpsi=del ^*del psi+1/4Rpsi-1/2F_L^+(psi), where D is the Dirac operator D:Gamma(W^+)->Gamma(W^-), del is the covariant derivative on spinors, R is the scalar curvature, ...
The Lie derivative of tensor T_(ab) with respect to the vector field X is defined by L_XT_(ab)=lim_(deltax->0)(T_(ab)^'(x^')-T_(ab)(x))/(deltax). (1) Explicitly, it is given ...
The second-order ordinary differential equation y^('')+f(x)y^'+y=0.
Let suma_k and sumb_k be two series with positive terms and suppose lim_(k->infty)(a_k)/(b_k)=rho. If rho is finite and rho>0, then the two series both converge or diverge.
The partial differential equation 2u_(tx)+u_xu_(xx)-u_(yy)=0.
Let f(s) defined and analytic in a half-strip D={s:sigma_1<=R[s]<=sigma_2,I[s]>=t_0 0}. If |f|<=M on the boundary partialD of D and there is a constant A such that ...
Also known as the first fundamental form, ds^2=g_(ab)dx^adx^b. In the principal axis frame for three dimensions, ds^2=g_(11)(dx^1)^2+g_(22)(dx^2)^2+g_(33)(dx^3)^2. At ...
...
View search results from all Wolfram sites (19164 matches)

