Search Results for ""
2161 - 2170 of 13135 for calculusSearch Results
Take the Helmholtz differential equation del ^2F+k^2F=0 (1) in spherical coordinates. This is just Laplace's equation in spherical coordinates with an additional term, (2) ...
A solution to the spherical Bessel differential equation. The two types of solutions are denoted j_n(x) (spherical Bessel function of the first kind) or n_n(x) (spherical ...
The spherical Bessel function of the second kind, denoted y_nu(z) or n_nu(z), is defined by y_nu(z)=sqrt(pi/(2z))Y_(nu+1/2)(z), (1) where Y_nu(z) is a Bessel function of the ...
The spherical distance between two points P and Q on a sphere is the distance of the shortest path along the surface of the sphere (paths that cut through the interior of the ...
The spherical Hankel function of the first kind h_n^((1))(z) is defined by h_n^((1))(z) = sqrt(pi/(2z))H_(n+1/2)^((1))(z) (1) = j_n(z)+in_n(z), (2) where H_n^((1))(z) is the ...
The spherical Hankel function of the second kind h_n^((1))(z) is defined by h_n^((2))(z) = sqrt(pi/(2x))H_(n+1/2)^((2))(z) (1) = j_n(z)-in_n(z), (2) where H_n^((2))(z) is the ...
A formula also known as the Legendre addition theorem which is derived by finding Green's functions for the spherical harmonic expansion and equating them to the generating ...
In three dimensions, the spherical harmonic differential equation is given by ...
The Lie derivative of a spinor psi is defined by L_Xpsi(x)=lim_(t->0)(psi^~_t(x)-psi(x))/t, where psi^~_t is the image of psi by a one-parameter group of isometries with X ...
A sequence of approximations a/b to sqrt(n) can be derived by factoring a^2-nb^2=+/-1 (1) (where -1 is possible only if -1 is a quadratic residue of n). Then ...
...
View search results from all Wolfram sites (19164 matches)

