TOPICS
Search

Search Results for ""


6201 - 6210 of 13134 for binomial theorySearch Results
The conjecture made by Belgian mathematician Eugène Charles Catalan in 1844 that 8 and 9 (2^3 and 3^2) are the only consecutive powers (excluding 0 and 1). In other words, ...
Consider a library which compiles a bibliographic catalog of all (and only those) catalogs which do not list themselves. Then does the library's catalog list itself?
The parametric equations for a catenary are x = t (1) y = acosh(t/a), (2) giving the evolute as x = t-a/2sinh((2t)/a) (3) y = 2acosh(t/(2a)). (4) For t>0, the evolute has arc ...
The parametric equations for a catenary are x = t (1) y = cosht, (2) giving the involute as x_i = t-tanht (3) y_i = secht. (4) The involute is therefore half of a tractrix.
The radial curve of the catenary x = t (1) y = cosht (2) with radiant point (x_0,y_0) is given by x_r = x_0-coshtsinht (3) y_r = y_0+cosht. (4)
The radius of convergence of the Taylor series a_0+a_1z+a_2z^2+... is r=1/(lim_(n->infty)^_(|a_n|)^(1/n)).
If f(x,y) is an analytic function in a neighborhood of the point (x_0,y_0) (i.e., it can be expanded in a series of nonnegative integer powers of (x-x_0) and (y-y_0)), find a ...
For R[mu+nu]>1, int_(-pi/2)^(pi/2)cos^(mu+nu-2)thetae^(itheta(mu-nu+2xi))dtheta=(piGamma(mu+nu-1))/(2^(mu+nu-2)Gamma(mu+xi)Gamma(nu-xi)), where Gamma(z) is the gamma function.
Let X_1,X_2 subset P^2 be cubic plane curves meeting in nine points p_1, ..., p_9. If X subset P^2 is any cubic containing p_1, ..., p_8, then X contains p_9 as well. It is ...
The metric of Felix Klein's model for hyperbolic geometry, g_(11) = (a^2(1-x_2^2))/((1-x_1^2-x_2^2)^2) (1) g_(12) = (a^2x_1x_2)/((1-x_1^2-x_2^2)^2) (2) g_(22) = ...
1 ... 618|619|620|621|622|623|624 ... 1314 Previous Next

...