Search Results for ""
2701 - 2710 of 3501 for art and mathSearch Results
The square of the area of the base (i.e., the face opposite the right trihedron) of a trirectangular tetrahedron is equal to the sum of the squares of the areas of its other ...
The de Longchamps ellipse of a triangle DeltaABC is the conic circumscribed on the incentral triangle and the Cevian triangle of the isogonal mittenpunkt X_(57). (Since a ...
The first de Villiers point is the perspector of the reference triangle and its BCI triangle, which is Kimberling center X_(1127) and has triangle center function ...
The constants C_n defined by C_n=[int_0^infty|d/(dt)((sint)/t)^n|dt]-1. (1) These constants can also be written as the sums C_n=2sum_(k=1)^infty(1+x_k^2)^(-n/2), (2) and ...
A number n is called an e-perfect number if sigma_e(n)=2n, where sigma_e(n) is the sum of the e-Divisors of n. If m is squarefree, then sigma_e(m)=m. As a result, if n is ...
An amazing pandigital approximation to e that is correct to 18457734525360901453873570 decimal digits is given by (1+9^(-4^(7·6)))^(3^(2^(85))), (1) found by R. Sabey in 2004 ...
Let a divisor d of n be called a 1-ary (or unitary) divisor if d_|_n/d (i.e., d is relatively prime to n/d). Then d is called a k-ary divisor of n, written d|_kn, if the ...
The q-analog of the binomial theorem (1-z)^n=1-nz+(n(n-1))/(1·2)z^2-(n(n-1)(n-2))/(1·2·3)z^3+... (1) is given by (1-z/(q^n))(1-z/(q^(n-1)))...(1-z/q) ...
The q-analog of integration is given by int_0^1f(x)d(q,x)=(1-q)sum_(i=0)^inftyf(q^i)q^i, (1) which reduces to int_0^1f(x)dx (2) in the case q->1^- (Andrews 1986 p. 10). ...
Define the nome by q=e^(-piK^'(k)/K(k))=e^(ipitau), (1) where K(k) is the complete elliptic integral of the first kind with modulus k, K^'(k)=K(sqrt(1-k^2)) is the ...
...