TOPICS
Search

Search Results for ""


331 - 340 of 381 for algebrasSearch Results
Let L=(L, ^ , v ) and K=(K, ^ , v ) be lattices, and let h:L->K. If h is one-to-one and is a join-homomorphism, then it is a join-embedding.
Let L=(L, ^ , v ) and K=(K, ^ , v ) be lattices, and let h:L->K. If K=L and h is a join-homomorphism, then we call h a join-endomorphism.
Let L=(L, ^ , v ) and K=(K, ^ , v ) be lattices, and let h:L->K. Then the mapping h is a join-homomorphism provided that for any x,y in L, h(x v y)=h(x) v h(y). It is also ...
Let L=(L, ^ , v ) and K=(K, ^ , v ) be lattices, and let h:L->K. If h is one-to-one and onto, then it is a join-isomorphism if it preserves joins.
Given an m×n matrix A and a p×q matrix B, their Kronecker product C=A tensor B, also called their matrix direct product, is an (mp)×(nq) matrix with elements defined by ...
A lattice automorphism is a lattice endomorphism that is also a lattice isomorphism.
Let L=(L, ^ , v ) and K=(K, ^ , v ) be lattices, and let h:L->K. A lattice endomorphism is a mapping h:L->L that preserves both meets and joins.
Let L=(L, ^ , v ) and K=(K, ^ , v ) be lattices, and let h:L->K. A lattice isomorphism is a one-to-one and onto lattice homomorphism.
Let L=(L, ^ , v ) be a lattice, and let f,g:L->L. Then the pair (f,g) is a polarity of L if and only if f is a decreasing join-endomorphism and g is an increasing ...
Let L=(L, ^ , v ) be a lattice, and let tau subset= L^2. Then tau is a tolerance if and only if it is a reflexive and symmetric sublattice of L^2. Tolerances of lattices, ...
1 ... 31|32|33|34|35|36|37 ... 39 Previous Next

...