Search Results for ""
31 - 40 of 381 for algebrasSearch Results
Let A denote an R-algebra, so that A is a vector space over R and A×A->A (1) (x,y)|->x·y. (2) Now define Z={x in A:x·y=0 for some y in A!=0}, (3) where 0 in Z. An Associative ...
In simple terms, let x, y, and z be members of an algebra. Then the algebra is said to be associative if x·(y·z)=(x·y)·z, (1) where · denotes multiplication. More formally, ...
A topological algebra is a pair (A,tau), where A=(A,(f_i^A)_(i in I)) is an algebra and each of the operations f_i^A is continuous in the product topology. Examples of ...
The Banach space L^1([0,1]) with the product (fg)(x)=int_0^xf(x-y)g(y)dy is a non-unital commutative Banach algebra. This algebra is called the Volterra algebra.
Exterior algebra is the algebra of the wedge product, also called an alternating algebra or Grassmann algebra. The study of exterior algebra is also called Ausdehnungslehre ...
Building on work of Huntington (1933ab), Robbins conjectured that the equations for a Robbins algebra, commutativity, associativity, and the Robbins axiom !(!(x v y) v !(x v ...
Let A denote an R-algebra, so that A is a vector space over R and A×A->A (1) (x,y)|->x·y, (2) where x·y is vector multiplication which is assumed to be bilinear. Now define ...
Let A be any algebra over a field F, and define a derivation of A as a linear operator D on A satisfying (xy)D=(xD)y+x(yD) for all x,y in A. Then the set D(A) of all ...
Let A be a unital C^*-algebra, then an element u in A is called an isometry if u^*u=1.
Let A be a C^*-algebra, then an element u in A is called a partial isometry if uu^*u=u.
...
View search results from all Wolfram sites (2531 matches)

