TOPICS
Search

Search Results for ""


111 - 120 of 381 for algebrasSearch Results
The commutator series of a Lie algebra g, sometimes called the derived series, is the sequence of subalgebras recursively defined by g^(k+1)=[g^k,g^k], (1) with g^0=g. The ...
The lower central series of a Lie algebra g is the sequence of subalgebras recursively defined by g_(k+1)=[g,g_k], (1) with g_0=g. The sequence of subspaces is always ...
If g is a Lie algebra, then a subspace a of g is said to be a Lie subalgebra if it is closed under the Lie bracket. That is, a is a Lie subalgebra of g if for all x,y in a, ...
A derivation is a sequence of steps, logical or computational, from one result to another. The word derivation comes from the word "derive." "Derivation" can also refer to a ...
Let A be a C^*-algebra having no unit. Then A^~=A direct sum C as a vector spaces together with 1. (a,lambda)+(b,mu)=(a+b,lambda+mu). 2. mu(a,lambda)=(mua,mulambda). 3. ...
Let A be an involutive algebra over the field C of complex numbers with involution xi|->xi^♭. Then A is a right Hilbert algebra if A has an inner product <·,·> satisfying: 1. ...
Relations in the definition of a Steenrod algebra which state that, for i<2j, Sq^i degreesSq^j(x)=sum_(k=0)^(|_i/2_|)(j-k-1; i-2k)Sq^(i+j-k) degreesSq^k(x), where f degreesg ...
Let X be a set of urelements that contains the set N of natural numbers, and let V(X) be a superstructure whose individuals are in X. Let V(^*X) be an enlargement of V(X), ...
The bicommutant theorem is a theorem within the field of functional analysis regarding certain topological properties of function algebras. The theorem says that, given a ...
Let U=(U,<··>) be a T2 associative inner product space over the field C of complex numbers with completion H, and assume that U comes with an antilinear involution xi|->xi^* ...
1 ... 9|10|11|12|13|14|15 ... 39 Previous Next

...